Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

'Water Window' Poses Imaging Prospect

Facebook Twitter LinkedIn Email Comments
SALAMANCA, Spain, Aug. 22, 2014 — The “water window” of biological tissue can be exploited to achieve high-contrast microscope images, as well as precision spectroscopy, according to a new theoretical study.

Researchers from the Center for Pulsed Lasers said they have identified the physical mechanism to efficiently generate high-order harmonic radiation at high laser intensities beyond the saturation threshold of atoms and molecules.

It should be possible to develop coherent radiation in the 3.3- to 4.4-nm range that is not absorbed by the water in biological tissues, the researchers said. The lack of absorption in that range led to the term “water window.”

The researchers predict an increased harmonic yield when laser intensity is increased. This “contradicts the general belief of a progressive degradation of the harmonic emission at ultrahigh intensities,” the researchers wrote in the study.

Similar work focusing on hydrogen has been conducted in the past. The current study extends beyond that to argon atoms, which typically provide a high-enough frequency conversion to effect high-order harmonic generation.

The researchers combined classical analysis and quantum mechanical calculation resulting from “the numerical integration of the 3-D time-dependent Schröodinger equation complemented with the time-frequency analysis.”

The research was published in European Physical Journal D (doi: 10.1140/epjd/e2014-50086-6).

For more information, visit www.clpu.es.

Photonics.com
Aug 2014
Biophotonicspulsed lasersCLPUEuropelasersMicroscopyResearch & TechnologyspectroscopyCenter for Pulsed LasersBioScan

Comments
LATEST HEADLINES
view all
PHOTONICS MARKETPLACE
Search more than 4000 manufacturers and suppliers of photonics products and services worldwide:

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2021 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.