Wrinkles Improve Fiber Optic Strain Sensor

Facebook X LinkedIn Email
Sensitivity to strain is boosted without increasing temperature sensitivity.

Breck Hitz

Fiber sensors are excellent detectors of both strain and temperature — and that can be a problem. They respond to both environmental variables, making it difficult to tell which one is changing. To compensate, fiber optic strain sensors often are deployed with separate temperature sensors nearby, so the effect of strain on the fiber sensor can be isolated.


Figure 1. The scientists wrote the long-period fiber grating (LPFG) with a CO2 laser while monitoring its transmission spectrum in real time (a). A micro-photograph of the resulting grating shows the small channels ablated in the side of the fiber (b). Images reprinted with permission of Optics Letters.

Recently, researchers at Hong Kong Polytechnic University demonstrated a fiber optic sensor that is far more sensitive to strain than conventional sensors, but no more sensitive to temperature. Wrinkles are the secret of its success.


Figure 2. The fiber in Figure 1(b) is diagrammed schematically (a). The dimensions are D = 15 μm, W = 50 μm and Λ = 410 μm. When a longitudinal strain is applied to the fiber, it tends to become wrinkled because of the uneven restoring force along its length (b).

Long-period fiber optic gratings are fabricated by creating periodic index perturbations along the fiber’s length. The “long period” designation indicates that the periodicity of the perturbations is much longer than the wavelength of light guided in the fiber. These perturbations form a grating that couples light at resonant wavelengths out of the core, so one or more narrow loss peaks are imposed on the fiber’s transmission spectrum. Long-period gratings make good sensors because both strain and temperature alter the grating’s effective periodicity and, therefore, change the wavelength of the loss peaks.

Figure 3. The notched fiber grating (blue) showed 25 times the sensitivity to strain as the normal (unnotched) grating (red) (a). But both gratings showed the same temperature sensitivity (b).

A common technique for creating the index perturbations is to write them thermally with a laser. In this case, the scientists went one step further, hitting the side of a photonic crystal fiber with enough energy from a Synrad Inc. CO2 laser not only to create an index change, but also to ablate some of the glass from the side of the fiber to create small notches (Figure 1). When a wrinkled piece of cloth is stretched, its wrinkles tend to disappear, but when the straight fiber in Figure 1 is stretched, it becomes wrinkled (Figure 2). This wrinkling, or microbending, creates a greater change in the fiber’s refractive index than that created when a normal (unnotched) fiber grating is stretched. Thus, the notched fiber grating is more sensitive to strain than an unnotched one.

To demonstrate the enhanced sensitivity of their notched long-period grating, the investigators compared it with a similar grating that they fabricated using less energy from the CO2 laser, so that index perturbations — but no notches — were created in the fiber. The two gratings had similar optical characteristics when no strain was applied, but the notched grating exhibited 25 times the sensitivity to strain as the unnotched grating (Figure 3, top). Meanwhile, both gratings showed the same sensitivity to temperature change (Figure 3, bottom). In other words, the notched fiber would be 25 times superior to the unnotched one at sensing strain in the presence of simultaneous temperature change.

Optics Letters, Dec. 1, 2006, pp. 3414-3416.

Published: January 2007
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
environmental variablesfiber opticsFiber sensorsnanophotonicsResearch & TechnologySensors & DetectorsTech Pulsetemperature sensors

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.
Vision Spectra Conference 2024LIVE NOW: The Potential of Industrial Cameras: A Guide to Transitioning from Smart Cameras Without Fear X