Search
Menu
Vescent Photonics LLC - Lasers, Combs, Controls 4/15-5/15 LB
< More Webinar AlertsSubscribe to our E-Newsletters

Join us for a FREE webinar: "Enabling Nanophotonics, Data Storage and Energy Conversion with New Plasmonic Materials" (2/2/2015)

Free Webinar! Enabling Nanophotonics, Data Storage and Energy Conversion with New Plasmonic Materials
If you are having problems seeing this newsletter, please click here to view

Photonics Media presents a Free Webinar!
Photonics Media - The Pulse of the Industry

Follow us on twitter          Like us on Facebook
FREE WEBINAR
Enabling Nanophotonics, Data Storage and Energy Conversion with New Plasmonic Materials
Join us for a Webinar on Wednesday, February 4, 2015
Over the past decade, one of the major focal points for the area of nanophotonics has been developing a new class of plasmonic structures and metamaterials as potential building blocks for advanced optical technologies, including data processing, exchange and storage; a new generation of cheap, enhanced-sensitivity sensors; nanoscale-resolution imaging techniques; new concepts for energy conversion including improved solar cells, as well as novel types of light sources.

Designing plasmonic metamaterials with versatile properties that can be tailored to fit almost any practical need promises a range of potential breakthroughs. However, to enable these new technologies based on plasmonics, grand limitations associated with the use of metals as constituent materials must be overcome. In the structures demonstrated so far, too much light is absorbed in the metals (such as silver and gold) commonly used in plasmonic metamaterials. The fabrication and integration of metal nanostructures with existing semiconductor technology is challenging, and the materials need to be more precisely tuned so that they possess the proper optical properties to enable the required functionality.

Our recent research aims at developing novel plasmonic materials (other than the metals used so far) that will form the basis for future low-loss, CMOS-compatible devices that could enable full-scale development of plasmonic and metamaterial technologies. In this work, we replace metals with new plasmonic ceramics, such as transition metal nitrides, whose properties resemble those of gold. However, unlike gold, these materials have tunable optical properties. They are also cost-effective, robust, refractory (withstanding very high temperatures) and compatible with standard semiconductor processing.

Here, we will demonstrate that titanium nitride’s addition to the short list of plasmonic materials paves the way to a new class of data recording systems and CMOS-compatible, on-chip hybrid nanophotonic devices with unprecedented compactness, speed and efficiency. TiN may also enable novel energy conversion schemes. This talk will cover the new material platform, as well as novel designs and concepts for nanophotonic devices, data storage and energy conversion.



MARK YOUR CALENDAR
Date: Wednesday, February 4, 2015
Time: 1 p.m. EST


Space is limited. Reserve your Webinar seat now at:
https://attendee.gotowebinar.com/register/204178573412359681

After registering you will receive a confirmation email containing information about joining the Webinar.



SYSTEM REQUIREMENTS
PC-based attendees
Required: Windows® 8, 7, Vista, XP or 2003 Server

Mac®-based attendees
Required: Mac OS® X 10.6 or newer

Mobile attendees
Required: iPhone®, iPad®, Android™ phone or Android tablet




Visit Photonics Media to watch past webinars on demand to learn more about the latest developments in lasers, imaging, optics, biophotonics, machine vision, spectroscopy, microscopy, photovoltaics and more.

https://photonics.com/Webinars.aspx

Register Now!


Questions: [email protected]
Unsubscribe: https://www.photonics.com/Newsletter/EmailUnsubscribe.aspx

Subscribe | Manage Subscriptions | Privacy Policy | Terms and Conditions of Use

© 1996 - 2024 Laurin Publishing. All rights reserved.
Photonics.com is Registered with the U.S. Patent & Trademark Office.
Reproduction in whole or in part without permission is prohibited.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.