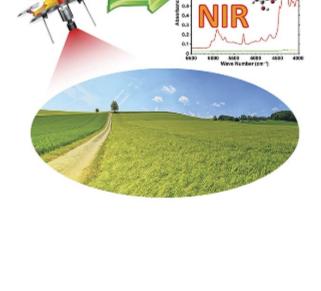
Wednesday, January 26, 2022





Monthly newsletter focusing on how light-based technologies are being used in the life sciences. Includes news, features and product developments in lasers, imaging, optics, spectroscopy, microscopy, lighting and more. Manage your Photonics Media membership at Photonics.com/subscribe.




## INSTRUMENTATION

### Near-infrared (NIR) spectroscopy has been used in groundbreaking research in many of the life sciences due to its capacity to rapidly

Analysis

Miniaturization in NIR Spectroscopy Reshapes Chemical

determine and analyze the composition of materials. Bulky instruments with limited portability, however, have kept the technology from being used in field applications. Current trends in miniaturization, however, have opened up new realms in which NIR spectroscopy would never have functioned years ago, providing on-site, flexible, and accurate tools for agricultural and environmental analysis and food quality inspection. This is especially true in the herbal medicine and food industries, where smartphone-operated sensors can be easily used in remote locations for rapid on-site analysis — for example, for in-field monitoring of medicinal plants. Read Article



### ability to amplify the presence of biomarkers to enable the optical detection and identification of genetic material from specific organisms,

Optical Filters Help PCR Tests Quickly Diagnose COVID-19 The need to implement technology that can rapidly diagnose diseases and pathogens accurately has never been greater than it is now, as the COVID-19 virus continues to spread around the world. Prior to 2020, most people working outside the field of molecular biology would not have been aware of polymerase chain reaction (PCR) testing and its

such as viruses. Since millions around the world have become infected with the coronavirus, the broader community has become increasingly aware of PCR as a tool that facilitates the accurate diagnosis of the disease, helping to inform infected persons so that they can subsequently isolate, seek care if needed, and prevent transmission of the virus to others. Read Article AI Imaging Method Provides Biopsy-free Skin Diagnosis

A deep learning-enabled imaging technology, developed by UCLA

cancer. The technology bypasses reliance on skin biopsies, which are

New CELESTA Quattro

Light Engine

invasive, cumbersome, and time-consuming. It can take days to

professor Aydogan Ozcan and colleagues, provides a noninvasive way to rapidly diagnose skin tumors, allowing earlier diagnosis of skin

Read Article



.: Featured Products

receive the results of a biopsy.

Lumencor Inc. The CELESTA quattro Light Engine delivers four lasers with brightness, stability, and longevity. It's designed to provide high performance solid-state illumination with which our CELESTA is

synonymous, yet it has been refined from seven to

Ultra Series Flat Top Narrowband filters offer the

∕isit Website

narrowest bandwidths and squarest filter profiles in

Visit Website

four outputs for enhanced value.

and Coatings Alluxa

Request Info

Product Development

through Manufacturing

Optikos Corporation

and Assembly

Alluxa Ultra Series Filters

Request Info

Visit Website

detection.

Request Info

High-speed 8-channel LED

Triggering

Light Sheet for Cleared

Applied Scientific

Instrumentation Inc.

The ct-dSPIM is a flexible and

Tissue

easy-to-use light sheet microscopy configuration

optimized for imaging large cleared tissue samples.

The sample is mounted on a motorized XYZ stage

immersion or other objective lenses are held in an upright "V" geometry for light sheet illumination and

and imaged via stage scanning. Two multi-

CoolLED Ltd. Alluxa Ultra Series Filters, CoolLED has enabled highincluding Narrowband, Dichroic, UV, IR, and Notch speed and affordable imaging filters, provide the highest performance optical thin with its 8-channel pE-800 Series Illumination Systems and USB controlled TTL film solutions available today. For example, the

> Visit Website Request Info Prospective MPX - First

trigger boxes. The pE-800 Series Illumination

use, and backed by CoolLED's...

Systems sees LEDs take centre stage as the widefield

illumination method of choice. Versatile, simple to

Microscope

User-Friendly Multiphoton

Optikos brings 40 years of engineering expertise to serve the development needs of a diverse portfolio facilities. Visit Website

the industry.

Optikos 40

of life science clients—from design through manufacturing and assembly in our extensive clean

Request Info

Photonics Media At last, a reference work has

been compiled that offers in

one place a broad survey of

technologies, applications

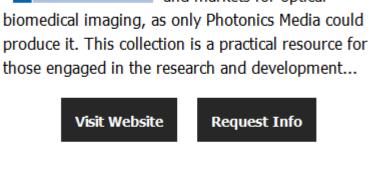
and markets for optical

Optical Biomedical Imaging



other locations...

neuroscientists, etc., who want to focus on their research, not on optics. Fast installation, typically within 10 minutes ready to image. Easily movable to


Visit Website Request Info Compact Fluorescence Imaging Modules for your

Etaluma Inc. Our powerful commercialready fluorescence

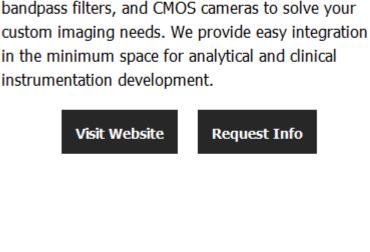
modern LED excitation, multi-

microscope modules use

Instrumentation Project



Biomedical Imaging


ногомер

### those engaged in the research and development...

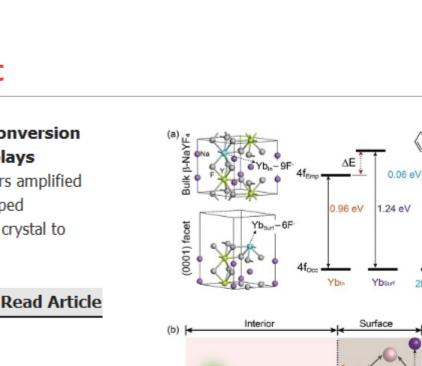
Request Info

Lumencor

SPECTRA Light Engine Bright, Multi-Color, Solid-State Illumination



Request Info


Alluxa

YOUR FLUORESCENCE MICROSCOPY FILTER PARTNER



Optical coherence tomography (OCT), long considered the gold standard for imaging and diagnosing diseases of the eye, could be used to identify and evaluate conditions deep beneath the skin. A team led by Duke University's Adam Wax has

developed a method to increase the depth at which light can penetrate skin. The team adapted dual-axis OCT for this purpose and increased the imaging depth of conventional OCT by almost 50%, providing depth penetration in skin



Ligand-coordination field

CONFERENCE

Register for free!

October 26-28, 202

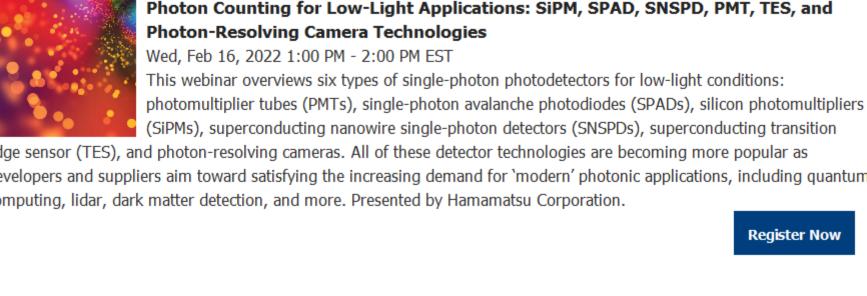
Sensitizer Activated sensitizer

### Johns Hopkins University researchers have developed a method for identifying and tracking cells in a manner similar to the way barcodes are used to identify and track products. The team used the method to study the way that cancer cells "talk" with one another.

OPTICS MODULES

**Biosensor Barcodes Track Cancer Cell Communications** 

AUTOMATION


Dual-Axis OCT Gets Under the Skin

imaging at 1.3 µm.

COMMERCIAL READY **eta**luma<sup>.</sup> microscopy simplified\* MICROSCOP) BIOPHOTONICS

Read Article

Read Article



.: Upcoming Webinars

edge sensor (TES), and photon-resolving cameras. All of these detector technologies are becoming more popular as developers and suppliers aim toward satisfying the increasing demand for 'modern' photonic applications, including quantum computing, lidar, dark matter detection, and more. Presented by Hamamatsu Corporation. Register Now

Hyperspectral Imaging, Optofluidics, PARS Microscopy, and more Photonics Media is currently seeking technical feature articles on a variety of topics for publication in our magazine BioPhotonics. Please submit an informal 100-word abstract to Senior Editor Doug Farmer at Doug.Farmer@Photonics.com,

### or use our online submission form www.photonics.com/submitfeature.aspx.

.: Next Issue:

Features

About BioPhotonics

and digital magazine.

Optical Filters Visit Photonics.com/subscribe to manage your Photonics Media membership. View Digital Edition Manage Membership

We respect your time and privacy. You are receiving this email because you are a Photonics Media subscriber, and/or a member

BioPhotonics is the global resource for research, business and product news and

information for the biophotonics community and the industry's only stand-alone print

Unsubscribe | Subscribe | Subscriptions | Privacy Policy | Terms and Conditions of Use Photonics Media, 100 West St., PO Box 4949, Pittsfield, MA 01202-4949

© 1996 - 2022 Laurin Publishing. All rights reserved. Photonics.com is Registered with the U.S. Patent & Trademark Office. Reproduction in whole or in part without permission is prohibited

# f 🕝 in 😼 🗅

of our website, Photonics.com. You may use the links below to manage your subscriptions or contact us. Questions: info@photonics.com