Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Objective Lenses

Olympus Europa SE & Co. KGRequest Info
 
Facebook Twitter LinkedIn Email
HAMBURG, Germany, March 6, 2012 — Olympus Europa Holding GmbH has released its MicroProbe Objective (MPO) lenses for studying the internal biology of living organisms.

The two new water-immersion lenses, the 27× magnification IV-OB35F22W20 and the 20× IV-OB13F20W20, have a needlelike design, with the lenses housed in tips measuring 3.5 and 1.3 mm in diameter, respectively.

They can be inserted into small surgical excisions, facilitating in vivo imaging without disrupting the natural state of the tissue or organ being investigated. The objectives can be inserted into body channels such as the ear or through the body wall via keyhole surgery, or can be positioned over small or difficult-to-reach tissues such as the cornea.

The MPO lenses can be combined with patch clamping and can be employed to produce multifluorescence images. Designed to work in conjunction with laser scanning microscopes or multiphoton systems, the “stick lenses” provide an innovative means of investigating biological processes as they occur in the in vivo environment of a living animal.

They are used for the intravital observation of processes in living organisms and, because of the built-in chromatic color correction, can be used for multicolor fluorescence studies. They are optimized for multiphoton excitation experiments because they offer high IR transmission rates.

Designed to work when immersed in water, the lenses are suitable for intravital imaging because water can mix with bodily fluids without hindering an experiment, and extra water can be supplied using an aspiration/irrigation system that fits onto the tip of the objective setup.

The lenses are available in two varieties, with different “stick” lengths and thicknesses. The IV-OB35F22W20 has a numerical aperture of 0.7 and a working distance of 0.2 mm. The longer tip of the 27× lens enables deeper tissue/cavity penetration. The IV-OB13F20W20 has the same working distance as the 27× lens, but provides a numerical aperture of 0.5. Because it has a thinner diameter, it is suitable for experiments that require only very small incisions.


Photonics.com
Mar 2012
REQUEST INFO ABOUT THIS PRODUCT

* Message:
(requirements, questions for supplier)
Your contact information
* First Name:
* Last Name:
* Email Address:
* Company:
Address:
Address 2:
City:
State/Province:
Postal Code:
* Country:
Phone #:
Fax #:

Register or login to auto-populate this form:
Login Register
* Required

When you click "Send Request", we will record and send your personal contact information to Olympus Europa SE & Co. KG by email so they may respond directly. You also agree that Photonics Media may contact you with information related to this inquiry, and that you have read and accept our Privacy Policy and Terms and Conditions of Use.
Photonics Marketplace
Looking for Laser Scanning Microscopes? There are 20 companies listed in the Photonics Buyers' Guide.
Browse Cameras & Imaging, Lasers, Optical Components, Test & Measurement, and more.
20× lens27× lensBiophotonicsBreakthroughProductsEuropeGermanyIV-OB13F20W20IV-OB35F22W20lenseslenses chromatic color correctionlenses in vivo imaginglenses intravital observationlenses laser scanning microscopeslenses multicolor fluorescence studieslenses multifluorescence imageslenses multiphoton systemslenses patch clampingMicroProbe objective lensesMicroscopyMPO lensesNew ProductsOlympusopticsProductsstick lensesstudy internal biology living organismswater-immersion lenses

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.