Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
BioPhotonics
BioPhotonics is the global resource for research, business and product news and information for the biophotonics community and the industry's only stand-alone print and digital magazine. Stay current with a FREE subscription, and expand your knowledge of light and the life sciences through our extensive, industry-specific archives.

EDITORIAL COMMENT
Latest Issue
Sep/Oct 2021

Raman technique spots early-stage viruses

DOUGLAS FARMER, SENIOR EDITOR [email protected]
In the laboratory, scientists and clinicians have come to rely on Raman spectroscopy because of its ability to provide chemically specific information about biospecimens. A variation on conventional methods, called coherent anti-Stokes Raman scattering (CARS) — in which femtosecond laser pulses cause molecules to vibrate in unison — has been used for identifying anthrax and mold spores, among other applications. Now, in the age the COVID-19 pandemic, the combination of plasmon resonance and Raman scattering is allowing for a practical approach to detecting the presence of virus particles.

While conventional Raman techniques are restricted by the Abbe limit, near-field optical techniques can be applied for greater contrast, and features that are smaller than the limit can be illuminated. A laser beam can both excite the molecule in question and reveal information contained within specific Raman signals.

These concepts led a research team at Texas A&M University to develop a technique with a catchy name, FAST CARS. FAST stands for the femtosecond adaptive spectroscopic technique. In the cover story here, the team explains that the combination of plasmon enhancement with lateral resolution has been applied to various specimens, and it has the capacity to capture a variety of signals before the immune system has begun producing antibodies to fight the illness.

Elsewhere in this issue, Rajagopal Srinivasan relates how devices that utilize light sensors have the potential to monitor urinary tract infections — for which dipstick colorimetric readings are often unreliable — at the bedside. Two recently developed device prototypes, one of which features a spectroscopic camera, capture spectral data in seconds from body fluids that have not been contaminated with outside elements, and they may allow early — and more importantly, correct — diagnoses. Learn more here.

In another feature article, Raluca Borlan, Monica Focsan, Simion Astilean, and Patriciu Achimas-Cadariu point out that near-infrared fluorophores contained within nanoparticles have the ability to image the boundaries of cancer tumors. In a clinical setting, a surgeon could receive this information in real time, reducing the need for invasive resections that could harm the patient. See what the future may hold here.

Finally, Emma McCarthy discusses how advancements in camera technology have produced effective in vivo imaging, based on factors including detector sensitivity, spatial resolution, and reduced noise, which could have a dramatic impact on the outcomes of diagnosis and treatment of a variety of conditions. Technologies such as NIR probes are enabling imaging at deeper depths with higher resolution to monitor the effects of treatment and allow doctors to change course as necessary. Read about the status of these advancements here.

And in “Biopinion,” Jose Pozo asserts that government regulation and the biomedical photonics community’s tendency to be territorial may hinder the arrival of a variety of optical approaches in the medical market. But the unified effort to effectively analyze and treat COVID-19 has cut across barriers in industry and academia, as participants have worked toward common goals. Pozo calls for the community to continue this momentum as the world confronts other public health challenges. See more of his point of view here.

Enjoy the issue!
Mike Wheeler
As editor-in-chief, Michael Wheeler oversees Photonics Media's editorial operations — spanning print, web, and podcasts. He also serves as editor of Vision Spectra, chronicling advancements in the rapidly expanding machine vision/inspection sector.
Dan McCarthy
Senior editor Dan McCarthy manages editorial content and production for Photonics Spectra. An award-winning writer and editor, he has communicated the progress and practical value of advanced technologies for over two decades.
Doug Farmer
Senior Editor Douglas Farmer has been a journalist for nearly 20 years, winning awards for health and education reporting. He has a master's degree in journalism from Ball State University. He is editor of EuroPhotonics and BioPhotonics magazines.
 
Sarah Weiler
As Webinar & Social Media Coordinator, Sarah Weiler organizes and produces all Photonics Media webinars and manages social media content. With a background in writing and editing, she also contributes to the print publications.
Hank Hogan
Contributing Editor Hank Hogan holds a Bachelor of Science degree in physics from the University of Texas at Austin. He worked in the semiconductor industry and now writes about science and technology.
Marie Freebody
Contributing Editor Marie Freebody is a freelance science and technology journalist with a master’s degree in physics and a concentration in nuclear astrophysics from the University of Surrey in England.
 
Farooq Ahmed
Farooq Ahmed has covered the physical and biological sciences for over a decade. He has a bachelor's degree in biochemistry from Brown University and a Master of Fine Arts degree in writing from Columbia University.
 
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2021 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to BioPhotonics magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.