Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

X-Mode™ DBRs Enable Extended Tuning Range

Facebook Twitter LinkedIn Email Comments
Author: Preston young, Ph.D., Annie Xiang, Ph.D., and John E. Spencer, Ph.D.
Wednesday, January 23, 2019
The Photodigm family of high-power edge-emitting Distributed Bragg Reflector (DBR) laser diodes is based on Photodigm’s proprietary single epi growth DBR laser architecture. The Photodigm DBR laser architecture consists of an electrically pumped gain region and a separate passive DBR grating region, monolithically fabricated over a continuous ridge waveguide. This design has resulted in the world’s highest power commercially available, single-frequency, and monolithic laser diodes with performance specifications that rival benchtop research lasers. Over the years, Photodigm DBR lasers have proven themselves to be ideally suited for applications requiring high-power single-frequency performance within a well-defined operating range. Photodigm has worked with its customers to develop a family of laser products unmatched in the industry. Optimized for stability, reliability, and power, these devices have opened up opportunities for an emerging class of cost-effective precision mobile instruments for applications in spectroscopy, atomic physics, non-linear optics, and quantum information. The DBR laser is often compared to the distributed feedback, or DFB, laser. Both DBR and DFB lasers are single frequency, diffraction limited, narrow bandwidth laser diodes. Most users will recognize the DFB as having an extended continuous tuning range, typically 2 nm within a continuous current and temperature tuning range. They will also associate the DBR with a similar tuning range, but one which is subject to periodic mode hops as the current or temperature are adjusted. Mode hops in a conventional DBR will typically occur with a free spectral range of approximately 0.15 nm as the device is tuned by current only with a slope of 0.002-0.003 nm/mA. While this free spectral range is acceptable for most applications, certain applications require a continuous tuning range of as much as 2 nm. Photodigm has recently introduced a new product, the X-Mode™ DBR, which combines the best attributes of a DBR laser with the tuning characteristics of a DFB. This breakthrough is a result of Photodigm’s extensive experience in the design and operation of laser diodes. By careful design and thermal management of the device, Photodigm’s X-Mode DBR will operate with a continuous wavelength range of 2 nm when tuned by temperature or current.
DOWNLOAD WHITE PAPER
File: Photodigm_X_Mode_DBR2.pdf (511.32 KB)
To download this white paper, please complete the *required fields before clicking the "Download" button.
Your contact information
* First Name:
* Last Name:
* Email Address:
* Company:
Address:
Address 2:
City:
State/Province:
Postal Code:
* Country:
Phone #:
Fax #:

Register or login to auto-populate this form:
Login Register
* Required

When you click "Download", you agree that your personal contact information may be shared with Photodigm Inc. and they may contact you about their products and services in the future. You also agree that Photonics Media may contact you with information related to this request, and that you have read and accept our Privacy Policy and Terms and Conditions of Use.
lasersspectroscopyPhotodigmextended mode hopDBRDFBmode hoppinglaser diodessingle modetunable laser diodes
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, info@photonics.com

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.