Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

Electron Microscopy Images Working Nanodevices

Photonics Spectra
Oct 2005
Daniel S. Burgess

To enable a better understanding of the behavior of electronic and mechanical systems constructed of nanoscale parts, a research team at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory, also in California, has developed a sample-handling approach for transmission electron microscopy that makes possible the live imaging of nanotube-based devices in operation. The method may affect photonics in the development of semiconductor fluorescent probes for biology applications and of LEDs and photodetectors based on nanostructures.

In a demonstration, the scientists fabricated an electron-transparent membrane by growing a 500- to 800-nm-thick layer of SiO on a silicon wafer. They then deposited a 10- to 20-nm-thick layer of Si3N4 atop the oxide and used chemical etches on the back side to selectively take away the silicon and to remove the exposed SiO. Nanostructure-based devices may then be placed on the Si3N4 layer that is left behind, against which they appear in relief under an electron microscope.

Although Si3N4 membranes have been used previously for imaging nanostructures, the investigators note that they have developed a means to incorporate them into functioning devices.

To illustrate the potential of the approach, they imaged 9.5-nm-diameter, 12-wall carbon nanotubes as they were thinned with exposure to increasing voltage. As the voltage increased from 200 mV to 2.56 V, individual walls of the tube would fail, causing the current passing through the tubes to decrease in regular steps of approximately 13.5 μA with each structural failure.

Conduction model

The observations suggest that current in a multiwall carbon nanotube is carried neither solely in the outermost wall nor equally in all the walls. Rather, the researchers propose, conduction in the nanostructures in the high-bias limit is better modeled as involving a hollow tube of bulk material.

Applied Physics Letters, Aug. 22, 2005, 083103.

electronicFeature ArticlesFeaturesmechanical systemsMicroscopySensors & DetectorsLEDs

Terms & Conditions Privacy Policy About Us Contact Us
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2018 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.