Search
Menu
Lumencor Inc. - Power of Light 4-24 LB

Slow Light Observed in Biological Film

Facebook X LinkedIn Email
It may enable all-optical switching with controllable delay.

Gary Boas

The phenomenon of slow light promises to contribute to advances in all-optical switching for telecommunications. Scientists have demonstrated slow light using materials such as atomic vapors, ruby crystals and quantum dots. However, because of their fixed lifetime and transition rates, inorganic materials do not allow wide all-optical control over the group velocity of photons. This sort of flexibility is crucial for all-optical switching.

Now, researchers at the University of Massachusetts Boston have achieved controllable ultraslow light using biological bacteriorhodopsin thin film. The material offers broad control over the group velocity, from less than 0.1 mm/s to the speed of light, said D.V.G.L.N. Rao, the principal investigator of the study.

This is possible because the bacteriorhodopsin molecule has two significant chemically isomerized states, the B and M states. The B is the stable state, and the M state has a relatively long lifetime, varying over orders of magnitude. The B state has an absorption band at 570 nm; the M state at 410 nm. Using the 568-nm beam from an argon-krypton laser from Coherent Inc. of Santa Clara, Calif., and the 442-nm output of a HeCd laser, they demonstrated controllable switching between the two states in a 100-μm-thick polymer film doped with bacteriorhodopsin molecules. This allowed them to modulate the rate of delay and to control the photons’ velocity.

In this way, Rao said, organic materials could enable all-optical switching applications requiring optical buffers and controllable delays. With optical routers, for example, a tremendous amount of information arrives at a single point, and users will want to delay some of that, depending on the priority. Work remains to be done before this is possible, however. “Right now, we are working with relatively long pulses,” he explained. “For real-world application, we may need to work with much shorter pulses. That is what we are planning to do.”

Physical Review Letters, Dec. 16, 2005, 253601.
PI Physik Instrumente - Fast Steering Mirrors LW 16-30 MR

Published: March 2006
Glossary
light
Electromagnetic radiation detectable by the eye, ranging in wavelength from about 400 to 750 nm. In photonic applications light can be considered to cover the nonvisible portion of the spectrum which includes the ultraviolet and the infrared.
quantum dots
A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
Basic ScienceCommunicationslightMaterialsquantum dotsResearch & Technologytelecommunications

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.