Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
share
Email Facebook Twitter Google+ LinkedIn Comments

Active Multipass Geometry Boosts Pulse Energy

EuroPhotonics
May 2008
Scientists from the University of Konstanz and from Trumpf Laser GmbH + Co. KG in Schramberg, both in Germany, have achieved pulse energies of more than 13 μJ from a thin-disc laser operating in air. These ultrashort pulses have applications in micromachining and in experimental physics as well as in the direct pumping of parametric devices.

TRUMPFDisk-MPCLaser.jpg
This 3-D perspective of a thin disc demonstrates the multiple passes of the laser mode. Courtesy of Trumpf Laser GmbH & Co. KG.


The Yb:YAG disc is 60 μm thick and 10 mm in diameter and has good thermal management and optical linearity. Previous high-energy pulse devices used helium to avoid the nonlinear effects of air. This laser uses a novel active multipass geometry — a pair of spherical mirrors is used to pass the light 44 times through the gain medium, producing better than 50 per cent output coupling and avoiding the need for helium. A semiconductor saturable absorber mirror provides passive mode-locking. The design yields a cavity that measures 39.93 m long in a footprint of only 0.3 × 1.0 m. The laser provides 55-W average power in 1.36-ps pulses at a 1030.3-nm centre wavelength, with a beam quality of M2 <1.2.

(Optics Letters, in press)

EuropeEUROResearchparametric devicespulse energiesResearch & Technologyultrashort pulses

Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2018 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, info@photonics.com

Photonics Media, Laurin Publishing
x Subscribe to EuroPhotonics magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.