Search
Menu
Vescent Photonics LLC - Lasers, Combs, Controls 4/15-5/15 LB

MEMS Muscle Awarded

Facebook X LinkedIn Email
ALBUQUERQUE, N.M., June 10, 2008 -- A mechanical micromuscle with nanoscopic movements and a microcreep-and-stress tester, both designed by students, were the big winners in Sandia National Laboratories’ fourth annual University Alliance Design Competition for microelectromechanical systems (MEMS) designs.

The University of Oklahoma, under the leadership of faculty advisor Harold Stalford, won in the novel design category for a mechanical micromuscle powered by thermal actuators that allow a mechanical arm to operate with nanoscale functionality above, to the side of and in the plane of its operating chip.
muscle.gif
This design from the University of Oklahoma demonstrates a mechanical micromuscle that might be able to perform microsurgical operations. (Photo courtesy Sandia National Laboratories)
The potential applications of the microrobotic arm include microsurgical operations and assembly of 3-D MEMS devices. The device’s thermal actuators require less voltage than similar devices (usually not capable of such precise movement) that rely upon electrostatic actuators, Sandia said in a statement. (Whitepaper: mems.sandia.gov/ua/08-doc/OU_Whitepaper_Novel_Design_2008.pdf)

To demonstrate its functionality, the components were placed as a tool on an operating platform designed last year at the university.

The student team from the University of Illinois at Urbana-Champaign, under the leadership of Professor Ioannis Chasiotis, won in the characterization, reliability and nanoscale phenomenom category by creating a design for the first MEMS platform able to perform creep-and-stress relaxation tests on polymeric, metallic and biological nanofibers.

Meadowlark Optics - Building system MR 7/23

The components are designed to test time-dependent behavior at even submicroNewton-force levels on polymeric and biological nanofibers, and to report in “real time,” as changes occur. Thermal grips mounted on a comb-drive actuator generate a predetermined amount of sample deformation, adding to the device’s accuracy, Sandia said. (Whitepaper: mems.sandia.gov/ua/08-doc/UIUC_white%20paper.pdf)
mems.gif
This University of Illinois design is for a MEMS platform able to perform creep and stress relaxation tests on polymeric, metallic biological nanofibers. (Photo courtesy Sandia National Laboratories)
First-place winners (student lead and sponsoring professor) in both categories were invited to to present their designs to Sandia’s review team, meet with MEMS experts and tour the facilities. All other participants were welcome to attend the awards ceremony and present their designs, pending Sandia technical approval.

Twenty schools participate in the alliance. This year, five schools entered seven designs in the contest. All contest participants' designs are fabricated in Sandia’s MEMS production facilities, where a design competition reticle is set aside for the purpose, said Mark Platzbecker, who leads Sandia’s MEMS Core Technologies technical team. Fabrication of the students' designs is expected to start by June 15, and parts will be produced by Sept. 15, he said.

For more information, visit: mems.sandia.gov/ua/contest.html

Published: June 2008
Glossary
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
Biophotonicsfiber opticsIndustry Eventsmicrocreep-and-stress testermicromusclenanonanoscopicNews & FeaturesphotonicsSandia National Laboratoriesstudent MEMS design competition

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.