Search
Menu
LPC/Photonics.com - Stay-Up-To-Date

Polarizers Spy Perilous Chems

Facebook X LinkedIn Email
CHICAGO, March 13, 2009 – Remote chemical detection is typically done using a technique called laser-induced breakdown spectroscopy (LIBS). This method enables chemists to analyze the composition of a suspected bomb without actually touching it.

The LIBS technique is typically used for “standoff” detection in harsh or potentially dangerous environments such as blast furnaces, nuclear reactors and biohazard sites, and on unmanned planetary probes like the Mars rovers.

Information provided by LIBS, however, is sometimes clouded by interfering signals caught by the spectroscope, and eliminating the background can be expensive. But a group of chemists at the University of Illinois at Chicago (UIC) reports that equipping LIBS with a polarizing filter can do the job at a lower cost and probably with equal or greater sensitivity than with the tools currently in use.

Robert Gordon, professor and head of chemistry at UIC, became interested in polarized light after reading books by cosmologist Brian Greene that described a slight polarization of the cosmic microwave background left over from the Big Bang. Out of curiosity, Gordon had his lab group zap a crystal of silicon by firing pairs of near-infrared laser pulses at 80 fs – or 80 millionths of a billionth of a second. This “mini-Big Bang-like” laser ablation caused a brief spark, or plasma, that gave off ultraviolet light, which the group checked for polarization.

“We thought we’d see maybe a few percent polarization,” said Gordon. “But when we saw 100 percent, we were totally astonished.”

The spectrum of light they studied, similar to the rainbow a prism creates when held up to sunlight, includes a series of lines that are the hidden signatures of chemical elements. To get rid of the background spectrum and focus just on the element lines, current LIBS uses a time-resolved method that works like a camera shutter by snapping at nanosecond speeds. Gordon’s group discovered that, by eliminating the shutter and instead using a rotating polarizer, they could filter out the background and focus on the lines.

“The polarizer costs just pennies, whereas a time-shutter is a very expensive component,” Gordon said. “By simply putting a polarizer in a detector and rotating it to get maximum signal-to-noise ratio, you can improve the quality of the signal effortlessly and fairly cheaply.”

Gordon said there is still basic work that needs to be done to answer why the light gets polarized. He said that varying the angle and the intensity of the laser pulses used to ablate the sample material may provide additional ways to enhance LIBS.

Gordon’s co-workers include postdoctoral research associates Youbo Zhao and Yaoming Liu, doctoral student Sima Singha and former undergraduate Tama Witt.

Funding came from the National Science Foundation and the US Air Force Research Laboratory Materials and Manufacturing Directorate.

For more information, visit: www.uic.edu


Zurich Instruments AG - Boost Your Optics 1-24 MR

Published: March 2009
Glossary
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
polarization
Polarization refers to the orientation of oscillations in a transverse wave, such as light waves, radio waves, or other electromagnetic waves. In simpler terms, it describes the direction in which the electric field vector of a wave vibrates. Understanding polarization is important in various fields, including optics, telecommunications, and physics. Key points about polarization: Transverse waves: Polarization is a concept associated with transverse waves, where the oscillations occur...
spectrum
See optical spectrum; visible spectrum.
Basic SciencebiohazardsBrian Greeneindustriallaser pulseslaser-induced breakdown spectroscopyLIBSMars rovermini-Big Bang-like laser ablationNational Science FoundationNews & Featuresphotonicspolarizationpolarized filtersRobert GordonSensors & DetectorsSima Singhaspectrumstand-off detectionTama WittUniversity of Illinois at ChicagoUS Air Force Research Laboratory Materials and Manufacturing DirectorateYaoming LiuYOubo Zhao

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.