Search
Menu
Zurich Instruments AG - Lock-In Amplifiers 4/24 LB

Method Recovers Pricey Nanoparticles

Facebook X LinkedIn Email
BRISTOL, England, April 16, 2010 — Ounce for ounce, nanoparticles can be more precious than gold, making a new-found method that recovers, recycles and reuses nanoparticles invaluable.


Solar panels, flexible displays, and other futuristic electronics made with nanoparticles may become more affordable thanks to a new method that recovers the pricey particles for reuse. (Image: iStock)

The new method could speed application of nanotechnology in new generations of solar cells, flexible electronic displays, and other products, the scientists suggest.

Julian Eastoe and colleagues at the University of Bristol in England point out that scientists are seeking better ways to recover and reuse nanoparticles, which are barely 1/50,000th the width of a human hair. Without that technology, manufacturing processes that take advantage of nanoparticles' unusual properties might be prohibitively expensive.

Recovering and recycling nanoparticles is especially difficult because they tend to form complex, hard-to-separate mixtures with other substances.

Eastoe and colleagues describe the development of a special type of microemulsion — a mixture of oil and water (mayonnaise is an edible emulsion) — that may solve this problem. In laboratory tests using cadmium and zinc nanoparticles, they showed how the oil and water in the microemulsion separated into two layers when heated. One layer contained nanoparticles that could be recovered and the other contained none. The separation process is reversible and the recovered particles retain their shape and chemical properties, which is crucial for their reuse, the scientists note.

For more information, visit:  www.acs.org 




Meadowlark Optics - Building system MR 7/23

Published: April 2010
Glossary
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
nanotechnology
The use of atoms, molecules and molecular-scale structures to enhance existing technology and develop new materials and devices. The goal of this technology is to manipulate atomic and molecular particles to create devices that are thousands of times smaller and faster than those of the current microtechnologies.
Americascadmium and zinc nanoparticlesConsumerenergyFlexible Electronic Displaysgreen photonicsindustrialJulian Eastoenanonanoparticlesnanotechnologyrecycling nanoparticlesResearch & Technologysolar cellsWashington DC

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.