Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

Solid-state terahertz lasers warm up

Photonics Spectra
Feb 2011
Terahertz rays have proved hard to generate cost-effectively, as solid-state lasers so far have been unable to produce terahertz rays without supercooling. Some physicists even have speculated that frequency and temperature are linked by some fundamental physical law.

But a team of researchers at MIT and at Sandia National Laboratories in Albuquerque, N.M., have reported a solid-state terahertz laser that operates at nearly twice the temperature that such a fundamental law would have allowed. Although the reported temperature is still too low to enable airport scanners or bomb-detecting devices, the breakthrough is a major step forward in the search for room-temperature terahertz lasers.

In the new gallium arsenide and aluminum gallium arsenide laser, the applied voltage causes electrons to jump into an even higher energy state than usual. Scattering allows the electrons to release some energy as physical vibration rather than as light; most of the rest is emitted as photons. To build the laser, the gallium arsenide and aluminum gallium arsenide are deposited in alternating layers; each energy loss occurs in a different layer, and the layer’s thickness is what determines how much energy the electron will lose.

The work was published online in Nature Physics on Dec. 12, 2010.

Research & TechnologyTech Pulselasers

Terms & Conditions Privacy Policy About Us Contact Us
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2018 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.