Search
Menu
DataRay Inc. - ISO 11146-Compliant Laser Beam Profilers

Nanomaterial Yields Many Laser Colors

Facebook X LinkedIn Email
PROVIDENCE, R.I., May 1, 2012 — Nanocrystals that can produce red, green and blue laser light from a single material could open the door to digital displays and other devices that employ a variety of laser colors all at once.

Red, green and blue lasers have become small and cheap enough to find their way into products ranging from Blu-Ray DVD players to fancy pens, but each color is made with different semiconductor materials and by elaborate crystal growth processes.

Now, a new prototype technology developed at Brown University and QD Vision of Lexington, Mass., can achieve all three colors using materials consisting of nanometer-sized semiconductor particles called colloidal quantum dots, or nanocrystals. The colloidal quantum dots have an inner core of cadmium and selenium alloy and are coated with zinc, cadmium and sulfur alloy and proprietary organic molecular glue.

“Today in order to create a laser display with arbitrary colors, from white to shades of pink or teal, you’d need these three separate material systems to come together in the form of three distinct lasers that would not have anything in common,” said Arto Nurmikko, professor of engineering at Brown University. “Now enter a class of materials called semiconductor quantum dots.”


Colloidal quantum dots — nanocrystals — can produce lasers of many colors. Cuong Dang manipulates a green beam that pumps the nanocrystals with energy, in this case producing red laser light (at left). (Image: Mike Cohea/Brown University)

Chemists at QD Vision synthesized the nanocrystals using a wet chemistry process that allows precise variation of the nanocrystal size by altering the production time. Size is all that must change to produce different laser light colors: 4.2-nm cores produce red light, 3.2-nm ones emit green light, and 2.5-nm ones shine blue. Other sizes would produce other colors along the spectrum.

Cognex Corp. - Smart Sensor 3-24 GIF MR

Because of their improved quantum mechanical and electrical performance, the coated pyramids require 10 times less pulsed energy or 1000 times less power to produce laser light than previous attempts at the technology.

When a batch of colloidal quantum dots is brewed to the Brown-designed specifications, Nurmikko and Cuong Dang, a senior research associate in Nurmikko’s group, get a vial of viscous liquid that somewhat resembles nail polish. This liquid is used to coat a square of glass or a variety of other shapes to make a laser. When the liquid evaporates, what’s left on the glass are several densely packed solid, highly ordered layers of nanocrystals. Sandwiching the glass between two specially prepared mirrors enables the researchers to create a vertical-cavity surface-emitting laser (VCSEL). This is the first working VCSEL with colloidal quantum dots, the Brown researchers said.

The alloy in the nanocrystal’s outer coating reduces an excited electronic state requirement for lasing and protects the nanocrystal from a kind of crosstalk that makes it hard to produce laser light, Nurmikko said. In addition to reducing crosstalk, the nanocrystal’s structure and outer cladding reduce the amount of energy needed to pump the quantum dot laser. The new approach’s structure enables the dots to act more quickly, releasing light before heat is lost as a result of a phenomenon known as the Auger process.

“We have managed to show that it’s possible to create not only light, but laser light,” Nurmikko said. “In principle, we now have some benefits: using the same chemistry for all colors, producing lasers in a very inexpensive way, relatively speaking, and the ability to apply them to all kinds of surfaces, regardless of shape. This makes possible all kinds of device configurations for the future.”

The method was described in Nature Nanotechnology.

For more information, visit: www.brown.edu  

Published: May 2012
Glossary
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
quantum dots
A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
AmericasArto NurmikkoAuger processBasic Scienceblue laserBrown Universitycadmium and selenium alloycolloidal quantum dotsConsumerCuong Dangdigital displaysDisplaysgreen laserlaser lightlaser light colorsnanonanocrystal sizenanomaterialsorganic molecular glueQD Visionquantum dotsred laserResearch & TechnologyRGB laserRhode Islandwet chemistry processLasers

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.