Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

X-ray Laser Supercharges Atoms
Nov 2012
MENLO PARK, Calif., Nov. 13, 2012 — Using a single flash from the world’s most powerful x-ray laser, researchers at SLAC have stripped a record number of electrons from xenon atoms, creating a “supercharged,” strongly positive state at energies previously thought too low.

The findings defy theoretical calculations suggesting that up to 26 of the 54 electrons of the noble gas could be kicked out at the energy used; the remaining electrons are too strongly bound. However, the scientists discovered that up to 36 electrons flew from the atoms.

“To our knowledge, this is the highest ionization that has ever been achieved in an atom using a single electromagnetic pulse,” said experiment leader Daniel Rolles, a researcher for the Max Planck Advanced Study Group (ASG) at the Center for Free-Electron Laser Science (CFEL) in Hamburg, Germany. “Our observation shows that the existing theoretical approaches have to be modified.”

When an atom loses electrons, it acquires a positive electric charge and becomes ionized. As more electrons are torn from the atom, its ionization becomes stronger.

The researchers from 19 research centers around the world fired intense x-ray laser flashes from the Linac Coherent Light Source (LCLS) at the US Department of Energy’s SLAC National Accelerator Laboratory at atoms of xenon. With 1.5 keV, the photons of the x-ray radiation had about 1000 times more energy than visible light. When such a high-energy photon hits an electron in the xenon atomic shell, its energy is transferred to the electron. Through this collision, the electron can be ejected from the atomic shell &dmash; depending on how strongly it is bound.

The ultrabright x-ray laser pulses of the Linac Coherent Light Source at SLAC National Accelerator Laboratory can be used to strip electrons away from atoms, creating ions with strong charges. The ability to interact with atoms is critical for making the highest resolution images of molecules and movies of chemical processes. Courtesy of Greg Stewart/SLAC National Accelerator Laboratory.

Just as a stretched guitar string can vibrate and sustain a note, a specific tuning of the laser’s properties can cause atoms and molecules to resonate. The resonance excites the atoms and causes them to shake off electrons at a rate that otherwise would require higher energies.

“The LCLS experiment produced an unexpected and unprecedented charge state by ejecting dozens of electrons from an atom,” said graduate student and co-author Benedikt Rudek from the Max Planck ASG and the Max Planck Institute for Nuclear Physics. “The absorbed energy per atom was more than twice as high as expected.”

At an energy of 1.5 keV, this resonance effect was particularly strong for xenon. Consequently, even at a higher energy of 2 keV, the researchers observed only less strongly ionized atoms. Based on the measurements, the CFEL scientists refined a computational model that allows them to calculate such resonances in heavy atoms.

“Our results give a ‘recipe’ for maximizing the loss of electrons in a sample,” Rolles said. “For instance, researchers can use our findings if they’re interested in creating a very highly charged plasma. Or, if the supercharged state isn’t part of the study, they can use our findings to know what x-ray energies to avoid.”

When investigating biological samples, however, most scientists should avoid the resonance regions of such heavy atoms because these regions can damage samples, affecting image quality, Rolles said.

Specialized equipment known as the CAMP chamber, pictured here, played a key role in advanced research at SLAC’s free-electron laser, the Linac Coherent Light Source. A new paper details experiments with CAMP that observed a record supercharged state in xenon atoms. The equipment was on loan to SLAC through a collaboration with the Max Planck Society Advanced Study Group. Courtesy of Brad Plummer/SLAC National Accelerator Laboratory.

In subsequent experiments, the researchers used the LCLS to examine krypton and molecules that contain other heavy atoms, said Artem Rudenko of Kansas State University, who led a recent follow-up experiment.

The team had previously used a laser facility in Germany to expose various atoms and molecules to pulses of ultraviolet light and was eager to use the higher-energy LCLS for further studies.

The precision measurements were conducted using a special experimental station, the CFEL-ASG Multi-Purpose (CAMP) chamber, which was shipped to SLAC for the three-year project. It was used in more than 20 experiments ranging from atomic and molecular physics to material sciences and bioimaging.

The research was reported in Nature Photonics (doi:10.1038/nphoton.2012.261). 

For more information, visit: or

The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
A large amount of vibration in a system due to a small periodic stimulus that has about the same period as the natural vibration period of the system.
A rare gas used in small high-pressure arc lamps to produce a high-intensity source of light closely resembling the color quality of daylight.
AmericasArtem RudenkoASGatomic physicsatomic shellBasic ScienceBenedikt Rudekbioimagingbiological samplesBiophotonicsCaliforniaCenter for Free-Electron Laser ScienceCFELDaniel RollesDESYejected electronselectric chargeelectronsEuropeGermanyionizationkryptonLCLSLinac coherent light sourcematerial sciencesMax PlanckMax Planck Advanced Study Groupmolecular physicsphotonicsResearch & TechnologyresonanceSLAC National Accelerator Laboratorysupercharged atomsultraviolet lightUS Department of Energyvisible lightx-ray laserx-ray radiationXenonlasers

Terms & Conditions Privacy Policy About Us Contact Us
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.