Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

Metamaterials manipulate light on a microchip

Facebook Twitter LinkedIn Email Comments
Controlling light on a microchip is no easy feat, but new theoretical designs for miniaturized optical devices made of metamaterials could make it a little easier.

A unified theory from researchers at Penn State University combines metamaterials and transformation optics. Transformation optics (TO) uses refraction in a rigorously mathematical way by applying the 150-year-old Maxwell equations describing the propagation of light onto metamaterials – artificial constructs with custom-designed refractive indexes. Metamaterials have been used in cloaking devices and perfect lenses, but those are just the tip of the optical iceberg.

Transformation optics devices that perform diverse, simple functions can be integrated to build complex photonic systems for optical communications, imaging, computing and sensing.

“This field [transformation optics] is in its early stages, so there are many contributions to be made,” said Douglas Werner, professor of electrical engineering. “Our big contribution is in figuring out how to develop TO designs with the simplest material parameters without impacting performance, and linking the devices together to form an on-chip integrated photonic system.”

Controlling light on a microchip could, in the short term, improve optical communications and allow sensing of any substance that interacts with electromagnetic waves. In the medium term, optical integrated circuits – the equivalent of the integrated electronic circuits found in cellphones and computers – for infrared imaging systems are feasible. High-speed all-optical computing is possible down the road, but this path requires some twists on well-known equations and the construction of structures smaller than the wavelength of light.

Among the Penn State designs are light collimators, waveguide couplers, TO splitters, waveguide crossings and TO benders, which turn the light around corners without loss. Each of these devices is only 5-10 µm in size, and many could fit on a centimeter-sized chip.

“In order to get the best design for a targeted application, thousands of simulations may have to be performed using powerful optimization techniques developed in our group,” Werner said. Doctoral candidate Jeremiah Turpin wrote algorithms for the simulation tools, and postdoctoral researcher Qi Wu developed the designs to be simulated.

TO devices that perform diverse, simple functions can be integrated together to build complex photonic systems for optical communications, imaging, computing and sensing, the researchers said. The current non-TO method is to design each device using different techniques and materials that may not be compatible on a single platform.

The Penn State method, on the other hand, employs graded index metamaterial structures, such as patterned air holes or rods, on a silicon-on-insulator platform that can be easily integrated into on-chip photonic systems, providing broad bandwidth and low losses.

All of the designs, described in Light: Science & Applications (doi: 10.1038/lsa.2012.38), can be realistically built with current fab processes, Werner said.

“It’s like a CAD tool,” he said, citing the computer-aided design tools used in manufacturing. “We’ve developed customized transformation optics simulation and optimization tools for designing optical devices. Beyond that, TO is flexible enough that it opens up the possibility of creating all sorts of new devices that don’t currently exist.”

Photonics Spectra
Feb 2013
optical communications
The transmission and reception of information by optical devices and sensors.
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
The bending of oblique incident rays as they pass from a medium having one refractive index into a medium with a different refractive index.
all-optical computingAmericasBasic Sciencechip-based optical integrated circuitsCommunicationscomputingcontrolling lightDouglas Wernerelectromagnetic wavesimagingindustrialintegrated electronic circuitsJeremiah Turpinlenseslight collimatorslight manipulationmaterialsMaterials & ChemicalsMaxwell equationmetamaterialsmicrochipminiaturized optical devicesoptical communicationsopticsPenn State UniversityPennsylvaniaphotonicsQi Wurefractionrefractive indexResearch & Technologysensingsilicon-on-insulator platformTech PulseTO bendersTO splitterstransformation opticswaveguide couplerswaveguide crossings

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.