Search
Menu
Gentec Electro-Optics Inc   - Measure With Gentec Accuracy LB

Brain scanning can improve road safety

Facebook X LinkedIn Email
Jun. 27, 2013 — Do you ever find yourself glaring at the driver in the car next to you, thinking, “He’s totally not paying attention to the road”? Now an optical technique can help you confirm that suspicion.

In a demonstration in San Francisco this week, researchers from Intel Labs showed how they are using a technique called functional near-infrared spectroscopy (fNIRS) to determine how alert drivers are to what’s going on around them.

When you’re driving, sometimes you’re looking at the road and paying attention and sometimes you’re looking at the road and not paying attention,” said Paul Crawford, a senior research scientist at Intel Labs. “There’s some subtle differences there that I hope, and I hypothesize, we can tease out.”

fNIRS measures brain activation by recording changes in cerebral oxygenation, and thus can facilitate brain mapping efforts associating regions of the brain with particular functions. It works by non-invasively transmitting near-infrared light into the brain and detecting it as it exits. Using the detected light, researchers can reconstruct images of oxy- and deoxygenated hemoglobin — which are coupled to neuronal activation.

In the IntelLabs demonstration, the investigators fitted an fNIRS cap to a driver sitting at a simulator, behind the wheel of a virtual Formula One car. The driver took two spins around a racetrack: one at 250 mph, requiring intense concentration to stay on the course, the other at 50 mph.

Cognex Corp. - Smart Sensor 3-24 GIF MR


An Intel research scientist explains how brain scanning can make roads safer.



The data revealed differences in the brain between intense (in the former drive) and somewhat less intense concentration (in the latter drive). When combined with other information — where the driver is looking, for instance — it can tell just how focused the driver is on the road. 

Such understandings can help to make the road safer: by telling the car to adjust environmental controls — e.g., turning up the radio — when the driver needs a touch more stimulation, or even by giving greater control to autonomous driving functions such as automatic braking when the driver proves less alert than he or she should be. 

Indeed, the demonstration adds to a growing body of research about driver-vehicle interaction — an important adjunct to technological developments in autonomous driving.

General Motors has been studying changes in driver behavior in self-driving vehicles, for example, and has found that driver attentiveness can actually improve with advanced driver assistance and safety features. (See: GM Studying Operator Behavior in Self-Driving Vehicles)



Published: June 2013
Glossary
functional near-infrared spectroscopy
Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique that measures changes in hemoglobin concentration in the brain. It utilizes near-infrared light to penetrate the scalp and skull and monitor the changes in blood oxygenation and volume in the cerebral cortex. fNIRS is often used to study brain function and activity, particularly in cognitive neuroscience and clinical research. Key features and principles of functional near-infrared spectroscopy include: ...
Autonomous drivingDifferent WavelengthsDriver-vehicle interactionFNIRSFunctional near-infrared spectroscopyGary BoasGary Boas BlogGeneral MotorsIntel LabsPaul Crawfordspectroscopy

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.