Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Adaptive Optics Enhances Subcellular Imaging

Facebook Twitter LinkedIn Email
A new adaptive optics approach sharpens microscope images for biologists studying the zebrafish.

The technique rapidly corrects for distortions in transparent, nonscattering tissues at the millimeter scale without exposing them to damaging levels of light, making it well-suited to imaging the transparent bodies of zebrafish, an important model organism for biology.

A membrane-labeled subset of neurons in the brain of a living zebrafish embryo is seen in a frame grab from an adaptive optics microscope operating in two-photon excitation mode. Courtesy of HHMI Janelia Farm Research Campus.

Dr. Eric Betzig, a team leader at the Howard Hughes Medical Institute's Janelia Farm Research Campus, postdoctoral fellow Dr. Kai Wang and colleagues used the technique to bring into focus the fine, branching structures and subcellular organelles of nerve cells deep in the living brain of a zebrafish. These structures remain blurry and indistinct under the same microscope without adaptive optics.

The technique involves two-photon excitation, and takes its cues from laser-induced guide stars used to correct for atmospheric turbulence in astronomy and descanning methods used to average out motion-induced errors in retinal imaging.

The researchers shined their own type of guide star across area of tissue, and the returning light was analyzed by a wavefront sensor to determine what optical corrections were necessary. The adaptive optics compensated for spatial variation in aberrations and recovered diffraction-limited imaging over large volumes (>240 mm per side) with a 14 ms update rate.

"We combined the descan concept from the ophthalmologists with the laser guide stars of the astronomers, and came up with what amounts to a really good solution for aberrating but nonscattering transparent samples, like the zebrafish," Betzig said.

The research is published in Nature Methods (doi: 10.1038/nmeth.2925

For more information, visit:

Aug 2014
The scientific observation of celestial radiation that has reached the vicinity of Earth, and the interpretation of these observations to determine the characteristics of the extraterrestrial bodies and phenomena that have emitted the radiation.
AmericasastronomyBiophotonicsBioScanEric Betzigguide starsHoward Hughes Medical InstituteimagingJanelia Farm Research CampusKai WangMicroscopyopticsSensors & Detectorstwo-photon excitationdescanninglasers

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to BioPhotonics magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.