Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Carbon Spaser Could Zap Cancer Cells

Facebook Twitter LinkedIn Email
MELBOURNE, Australia, April 21, 2014 — A carbon-based nanolaser could be used to zap cancer cells, or enable electronics small and flexible enough to be printed on clothing.

Said to be the first of its kind, the spaser – short for surface plasmon amplification by stimulated emission of radiation – was modeled by researchers from Monash University’s Department of Electrical and Computer Systems Engineering. It involves excitons from an optically excited carbon-nanotube gain element interacting with surface plasmons on a graphene nanoflake resonator.


Model of a carbon-based spaser. Courtesy of Monash University.


The spaser would generate high-intensity, nanoscale electrical fields much stronger than those generated by illuminating metal nanoparticles with lasers, said doctoral candidate Chanaka Rupasinghe, and have applications in cancer therapy, among others.

“Scientists have already found ways to guide nanoparticles close to cancer cells,” Rupasinghe said. “We can move graphene and carbon nanotubes following those techniques, and use the [highly concentrated] fields generated through the spasing phenomena to destroy individual cancer cells without harming the healthy cells in the body.”

The researchers derived, in theory, the optimal geometric and material parameters to yield the highest plasmon generation rate. They chose carbon nanostructures because they are more than 100 times stronger than steel, can conduct heat and electricity better than copper, and can withstand high temperatures. These properties make them preferable to other spasers designed with gold or silver nanoparticles, or semiconductor quantum dots, Rupasinghe said.

“Because of these properties, there is the possibility that in the future an extremely thin mobile phone could be printed on clothing,” he said.

The paper is published in ACS Nano (doi: 10.1021/nn406015d).

For more information, visit: www.monash.edu

Photonics.com
Apr 2014
Asia-PacificAustraliaBiophotonicscancercarbon nanotubesCommunicationsgraphenematerialsMonash UniversitynanoResearch & TechnologyspaserChanaka Rupasinghe

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.