Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
share
Email Facebook Twitter Google+ LinkedIn Comments

Frequency-Stable Laser System for Space Could Be Used for Optical Satellite Navigation

Photonics Handbook
BERLIN, June 19, 2018 — Scientists report that an active optical frequency reference based on molecular iodine was successfully tested for the first time in space. Results of the JOKARUS experiment (German acronym for iodine comb resonator under weightlessness) could be a step toward laser interferometric distance measurements between satellites, and future global navigation satellite systems based on optical technologies.

JOKARUS experiment successfully demonstrates frequency-stable laser systems in space. FBH and HU Berlin.
The system used to demonstrate the first optical frequency standard based on molecular iodine in space. Courtesy of HU Berlin/Franz Gutsch.

The experiment demonstrated the fully automated frequency stabilization of a frequency-doubled 1064-nm extended cavity diode laser (ECDL) on a molecular transition in iodine. The 1064-nm diode laser module was completely encapsulated in a 125- × 75- × 22.5-mm package. It delivered an optical power of 570 mW within the linewidth of the free-running laser of 26 kHz (full width half maximum, 1 ms measurement time).

Scientists used a polarization-maintaining, optical single-mode fiber to divide the laser light into two paths. The laser beams were then modulated, frequency-doubled, and processed for Doppler-free saturation spectroscopy.

The centerpiece of the laser system is a microintegrated ECDL MOPA (master oscillator power amplifier), with an ECDL as a local oscillator (i.e., a master oscillator or MO) and a ridge waveguide semiconductor amplifier acting as a power amplifier, or PA.

During frequency reference tests carried out in May 2018 on board a sounding rocket, the compact laser system demonstrated its suitability for space. To provide a basis for comparison, a frequency measurement with an optical frequency comb from a separate experiment was performed during the same space flight.

A micro-integrated diode laser module (ECDL-MOPA) from the Ferdinand-Braun-Institut emitting at a wavelength of 1,064 nm.
A microintegrated diode laser module (ECDL-MOPA) from the Ferdinand-Braun-Institut emitting at a wavelength of 1064 nm was successfully used in space. Courtesy of FBH/schurian.com.

The JOKARUS payload was developed and implemented under the direction of the Humboldt-Universität zu Berlin (HU Berlin) and by the Ferdinand-Braun-Institut (FBH). A quasi-monolithic spectroscopy module was provided by the University of Bremen. The operating electronics were provided by Menlo Systems.

The results of the JOKARUS experiment represent a milestone toward the use of optical clocks in space. Optical clocks in space could be used for satellite-based navigation systems that would provide data for accurate positioning and for fundamental physics research, including the detection of gravitational waves and measurements of the gravitational field of the Earth.

A press release on JOKARUS is available here.


Research & TechnologyEuropeeducationlasersdiode lasersopticsspectroscopylaser measurementTest & Measurementaerospaceoptical clockCommunicationssatellite navigation systemoptical frequency standardmolecular iodine

Comments
PHOTONICS BUYERS' GUIDE
Search more than 4000 manufacturers and suppliers of photonics products and services worldwide:

Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2018 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, info@photonics.com
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.