Search
Menu
Rocky Mountain Instruments - Custom Assemblies LB

Silicon-Based Optical Filter Splits Light Across a Range of Wavelengths

Facebook X LinkedIn Email
Researchers present a new optical filter on a chip that can process optical signals from across a wide spectra. The filter can match the broadband coverage and precision performance of bulky dichroic filters, but can be manufactured using traditional silicon-chip fabrication methods. The filter is based on spectrally selective waveguides, which combine the broadband response of adiabatic transitions with the sharp spectral responses typically observed in interferometric filters.

Researchers at Massachusetts Institute of Technology (MIT) said that the new filter can take a very broad range of wavelengths within its bandwidth as input and efficiently separates the input into two output signals, regardless of its width or wavelength.

On-chip optical filter processes light across wide spectra, MIT.
MIT researchers have designed an optical filter on a chip that can process optical signals from across an extremely wide spectrum of light at once, something never before available to integrated optics systems that process data using light. Courtesy of E. Salih Magden.

To build the filter, researchers created two sections of silicon waveguides and sized the waveguides precisely. One section of the filter contained an array of three waveguides. The other section contained a single waveguide.

By tweaking the widths in the three-waveguide array and the gaps between the waveguides, researchers made the array appear as a single, wider waveguide to certain (longer) wavelengths. Adjusting the metrics of the waveguides created a cutoff point, measured in nanometers, at which a wavelength of light would “see” the three-waveguide array as a single waveguide. To longer wavelengths, the three-waveguide array appeared wider than the single waveguide located in the other section of the filter.

To demonstrate, researchers created a single waveguide measuring 318 nm, and three separate waveguides measuring 250 nm each, with gaps of 100 nm in between. These sizes corresponded to a cutoff in the IR region of around 1540 nm.

When a light beam entered the filter, wavelengths measuring less than 1540 nm could detect one wide waveguide on one side and three narrower waveguides on the other. These wavelengths moved along the wider, single waveguide. Wavelengths longer than 1540 nm could not detect the spaces between the three-waveguide array. Instead, they detected one large waveguide with no gaps, and were thus directed to move along the three-waveguide array.

Deposition Sciences Inc. - Difficult Coatings - MR-8/23

“That these long wavelengths are unable to distinguish these gaps, and see them as a single waveguide, is half of the puzzle. The other half is designing efficient transitions for routing light through these waveguides toward the outputs,” researcher Emir Salih Magden said.

The design further allows for a sharp roll-off to produce a cleaner signal filtered with minimal loss. In measurements, the researchers found their filters offered about 10 to 70× sharper roll-offs than other broadband filters.

As a final component, the team developed guidelines for the exact widths of the waveguides and the gaps in between that are needed to achieve different cutoffs for different wavelengths. The guidelines make the filters customizable so they can work at any wavelength range.

“Once you choose what materials to use, you can determine the necessary waveguide dimensions and design a similar filter for your own platform,” Magden said.

Researchers believe that many of their broadband filters could be implemented in one system to flexibly process signals from across the entire optical spectrum. This could open the way for sharper optical combs, with more precisely spaced pulses and less signal noise.

One promising new application for optical combs is powering optical clocks for GPS satellites and for detecting gravitational waves. Other applications include high-precision spectroscopy, enabled by stable optical combs combining different portions of the optical spectrum into one beam, to study the optical signatures of atoms, ions, and other particles. In these applications and others, it will be useful to have filters that cover broad, and vastly different, portions of the optical spectrum on one device.

The research was published in Nature Communications (doi: 10.1038/s41467-018-05287-1).

Published: August 2018
Glossary
integrated optics
A thin-film device containing miniature optical components connected via optical waveguides on a transparent dielectric substrate, whose lenses, detectors, filters, couplers and so forth perform operations analogous to those of integrated electronic circuits for switching, communications and logic.
waveguide
A waveguide is a physical structure or device that is designed to confine and guide electromagnetic waves, such as radio waves, microwaves, or light waves. It is commonly used in communication systems, radar systems, and other applications where the controlled transmission of electromagnetic waves is crucial. The basic function of a waveguide is to provide a path for the propagation of electromagnetic waves while minimizing the loss of energy. Waveguides come in various shapes and sizes, and...
wavelength
Electromagnetic energy is transmitted in the form of a sinusoidal wave. The wavelength is the physical distance covered by one cycle of this wave; it is inversely proportional to frequency.
Research & TechnologyeducationAmericasMaterialsOpticsoptical filterssilicon photonicsintegrated opticsbroadband optical filterWaveguidewavelengthMassachusetts Institute of TechnologyTech Pulse

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.