Search
Menu
Hamamatsu Corp. - Earth Innovations LB 2/24

Hyperentangled Photon Pairs Produced

Facebook X LinkedIn Email
Investigators at the University of Illinois at Urbana-Champaign and at the University of Queensland in Brisbane, Australia, have used paired nonlinear crystals to prepare photon pairs that are entangled in all degrees of freedom: polarization, spatial mode and energy-time. Hyperentanglement may have applications in quantum bits of information to be encoded on a photon pair. In their experiment, 351-nm radiation from an argon-ion laser pumped contiguous 0.6-mm-thick BBO crystals to produce 702-nm photons by Type I parametric down-conversion. By focusing the pump beam to a waist size of 90...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: December 2005
    Glossary
    photon
    A quantum of electromagnetic energy of a single mode; i.e., a single wavelength, direction and polarization. As a unit of energy, each photon equals hn, h being Planck's constant and n, the frequency of the propagating electromagnetic wave. The momentum of the photon in the direction of propagation is hn/c, c being the speed of light.
    polarization
    Polarization refers to the orientation of oscillations in a transverse wave, such as light waves, radio waves, or other electromagnetic waves. In simpler terms, it describes the direction in which the electric field vector of a wave vibrates. Understanding polarization is important in various fields, including optics, telecommunications, and physics. Key points about polarization: Transverse waves: Polarization is a concept associated with transverse waves, where the oscillations occur...
    spatial mode
    Also known as transverse mode. The configurations of energy storage, relative to the structure of a laser resonator, that define the relative intensity distribution of the laser beam.
    As We Go To PressBreaking NewsphotonpolarizationPresstime Bulletinspatial modeUniversity of Illinois

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.