Search
Menu
PowerPhotonic Ltd. - Coherent Beam 4/24 LB

QD 'Doughnuts' Control Light

Facebook X LinkedIn Email
COVENTRY, England, March 11, 2009 -- Doughnut-shaped byproducts of quantum dots (QDs) have been used to slow and even freeze light. The discovery opens a range of possibilities, from reliable and effective light-based computing to "slow glass," a concept first suggested in science fiction. The key to this new research, led by the University of Warwick, is the exciton, a particle essential to modern electronics. An exciton is a bound state of an electron and an imaginary particle called an electron hole. After both orbiting around the nucleus of the atom, the electron’s high-energy state decays, it is drawn back to the hole,...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: March 2009
    Glossary
    electron
    A charged elementary particle of an atom; the term is most commonly used in reference to the negatively charged particle called a negatron. Its mass at rest is me = 9.109558 x 10-31 kg, its charge is 1.6021917 x 10-19 C, and its spin quantum number is 1/2. Its positive counterpart is called a positron, and possesses the same characteristics, except for the reversal of the charge.
    exciton
    An exciton is a quasiparticle that represents the bound state of an electron and a hole in a solid-state material, typically a semiconductor or an insulator. In simpler terms, an exciton is a paired electron and hole created when an electron absorbs a photon and is promoted to a higher energy state, leaving behind an empty state called a hole. Key characteristics of excitons include: Formation: Excitons are formed when an electron in the valence band of a material is excited to the...
    light
    Electromagnetic radiation detectable by the eye, ranging in wavelength from about 400 to 750 nm. In photonic applications light can be considered to cover the nonvisible portion of the spectrum which includes the ultraviolet and the infrared.
    photon
    A quantum of electromagnetic energy of a single mode; i.e., a single wavelength, direction and polarization. As a unit of energy, each photon equals hn, h being Planck's constant and n, the frequency of the propagating electromagnetic wave. The momentum of the photon in the direction of propagation is hn/c, c being the speed of light.
    photonics
    The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
    quantum dots
    A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
    Anaronov-Bohmatomcomputingdoughnutelectronelectron holeemitexcitonFischerfreezelightnanoringNews & FeaturesphotonphotonicsQDquantum dotsRoemerslowslow glassUniversity of Warwick

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.