Search
Menu
CASTECH INC - New Building the Bridge of Light

New Device Makes Better Use of Sunlight

Facebook X LinkedIn Email
A team at MIT has discovered a way to harvest solar energy more efficiently and potentially on demand. The new solar thermophotovoltaic (STPV) device combines photovoltaic (PV) systems, which turn sunlight directly into electricity, and solar thermal systems, which allow delayed use of energy since heat can be stored more easily than electricity. A nanophotonic solar thermophotovoltaic device is composed of an array of multiwalled carbon nanotubes as the absorber, a one-dimensional silicon/silicon dioxide photonic crystal as the emitter, and a 0.55-eV photovoltaic cell. Courtesy of...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: January 2014
    Glossary
    bandgap
    In semiconductor physics, the term bandgap refers to the energy range in a material where no electronic states are allowed. It represents the energy difference between the valence band, which is the highest range of energy levels occupied by electrons in their ground state, and the conduction band, which is the lowest range of unoccupied energy levels. The bandgap is a crucial parameter in understanding the electrical behavior of semiconductors and insulators. Here are the key components...
    broadband
    Indicating a capability to deal with a relatively wide spectral bandwidth.
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    photonic crystals
    Photonic crystals are artificial structures or materials designed to manipulate and control the flow of light in a manner analogous to how semiconductors control the flow of electrons. Photonic crystals are often engineered to have periodic variations in their refractive index, leading to bandgaps that prevent certain wavelengths of light from propagating through the material. These bandgaps are similar in principle to electronic bandgaps in semiconductors. Here are some key points about...
    bandgapbroadbandelectricityenergyMITnanonanophotonicnanotubesOpticsphotonic crystalsphotovoltaicsPVResearch & TechnologysunlightTech Pulsethermalsolar thermophotovoltaicSTPVexperiment

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.