Fiber Optic Sensors: Fundamentals and Applications

September, 2015

David Krohn, Ph.D. Light Wave Venture LLC dkrohn@lightwaveventure.com 203-248-1475

Presentation Focus

- The major focus of this presentation will be on distributive fiber optic sensors which has seen the greatest usage
- However, key applications for point sensors will be discussed
- The market dynamics will be covered briefly

Fiber Optic Sensor Commercialization Evolution

	Sensors	Telecom
1975	R&D- Military and Industrial	R&D- Telecommunications
1980	Laboratory Devices	Multimode Systems; Mb/s transmission
1985	1 st Industrial Applications and Military Systems	Advent of Single Mode Systems; Major Infrastructure Build
1990	1 st Commercial Gyroscope; Medical Applications	EDFA; Undersea Systems; Gb/s transmission
1995	1st Oil & Gas Field Trials and Smart Structures. First FBG interrogators.	Optical Component Advancements and DWDM
2000	1 st Commercial Oil & Gas Systems	Optical Networks; Market Peak at \$18B; Tb/s transmission
2010	Broad commercialization of sensors & instrumentation	Trials for 100Gb systems. R&D on multi-core fibers
2014	Key enabling technology for North American energy independence	

Advantages of Fiber Optic Sensors

- Nonelectrical
- Explosion proof
- Often do not require contact
- Remotable
- Small size and light weight
- Allow access into normally inaccessible areas
- Potentially easy to install (EMI)
- Immune to radio frequency interference (RFI) and electromagnetic interference (EMI)
- Solid state reliability
- High accuracy
- Can be interfaced with data communication systems
- Secure data transmission
- Resistant to ionizing radiation
- Can facilitate distributed sensing
- Can function in harsh environments

Light Modulation Effects Used by Fiber Sensors to Detect a Physical Parameter

Classification of Optical Fiber Sensors by Transducing Approach

Classification of Optical Fiber Sensors According to their Topology

Fiber Optic Distributed Sensors

Phase Modulated Sensors

Interferometers

Mach-Zehnder interferometer configuration

Michelson Interferometer configuration

Interferometers

Fabry–Perot interferometer configuration

Sagnac interferometer configuration

Phase Detection

• Change in length due to mechanical or thermal strain will cause a phase change (Mach-Zehnder interferometer)

$$\phi + \Delta \phi = \frac{2\pi}{\lambda_0} \left[n_1 L + n_1 \Delta L \right]$$

- Provides extremely high resolution
- Noise issues such as phase noise and multimode noise are addressed in the detection schemes

Fabry-Perot Interferometric Sensor Concepts

L L

Distributed Interferometric Sensor Configurations

Interferometric Sensing Performance

- Long term accuracy <1%
- Resolution < 0.01 microstrain
- Position Resolution 1 meter in 10 Km length
- Can monitor dynamic strain over a broad range of frequencies vibration signature
- There is a trade-off between distance range and frequency bandwidth (due to time-of-flight limitations).

How Does a Fiber Optic Hydrophone Work?

Source: Northrop Grumman

NORTHROP GRUMMAN **FOS Milestones:** Hydrophone Development Light Weight Wide Aperture Array (LWAA) Installed on 62 USS Virginia class nuclear submarines

FO Planar hydrophone Arrays (three flat panels mounted low along either side of the hull), as well as two high frequency active sonars mounted in the sail and keel (under the bow).

The result of 15+ years of R&D and \$140M of investment!

Wavelength Modulated Sensors

Fiber Bragg Gratings

Fiber Bragg Grating Sensor

Bragg Grating Sensor

The change in wavelength, associated with both strain and temperature effects, is given by:

$$\Delta\lambda_{B} = \left\{ 1 - \left[\frac{n^{2}}{2} \right] \left[P_{12} - v \left(P_{11} + P_{12} \right) \right] \varepsilon + \left[\alpha + \frac{dn}{dT} \right] \Delta T \right\},\$$

where:

e = the applied strain,

 P_{11} , P_{12} = the stress optic coefficient,

a = the coefficient of thermal expansion,

? = Poisson's ratio,

n = the refractive index of the core, and

?T = the temperature change.

For constant temperature

n

This relationship corresponds to 1 nm of wavelength change for 100 microstrain at a wavelength of 1300 nm.

For the case of zero applied strain

$$\frac{1}{\lambda_{\rm B}} \frac{\Delta \lambda_{\rm B}}{\Delta T} = 6.67 \times 10^{-6} \,/\,^{\circ}{\rm C}$$

At 1300 nm, a change in temperature of 1 °C results in a Bragg wavelength shift (??_B) of 0.01 nm.

Bragg Grating Sensor Response

Bragg Grating Sensors

Bragg Grating Distributed Sensing System Configurations

High Capacity WDM Distributed Sensing System Using Bragg Gratings

Source: Micron Optics

Conceptual Use of Static and Dynamic Strain Monitoring in a Bridge Application

* Suspected failure point in Minneapolis bridge failure

Strain change with Time Associated with Bridge Traffic

Source: Micron Optics

Scattering Based Sensors

Distributed Sensing Applications

The fiber is the sensor

Measurements all along a 10km fiber = 10,000 sensors!!

Distributed Sensing System Based on Scattering

Emission from Raman, Brillouin and Rayleigh Scattering

Raman Scattering Process in Optical Fiber

Source: Sumitomo & LIOS

Raman Scattering Distributed Temperature Sensing (DTS).

Temperature and Strain Sensitivities for Various Scattering Effects in Optical Fiber

Raman Scattering Performance

- Only measures temperature and is independent of strain.
- The temperature resolution is 0.5°C
- The measurement range is up to 15 km with a 1 meter spatial resolution (up to 25km with a 1.5 meter resolution) of the location of the temperature perturbation

Brillouin Scattering Performance

- The measurement range of up to 30 km.
- The sensing point associated with a physical perturbation can be resolved to 1 meter on a 10 km length, but accuracy is reduced as distance increases.
- The strain resolution is 20 microstrain. However, more advanced detection schemes can have a strain resolution of 0.1 microstrain.
- The temperature resolution is 0.5°C
- While Brillouin scattering is an excellent strain sensor technology, the response time is about 1 second; and therefore, is not suitable for vibration measurements.

Mach-Zehnder Interferomter Based on Rayleigh Scattering

Distributed Acoustic Sensing (DAS)

- Based on Rayleigh backscattered light in an optical fiber (single mode or multi mode)
- It senses all points along the fiber and monitors acoustic perturbations to the fiber
- Specifications
 - Frequency range 1mHz to 100kHz
 - Spatial resolution 1 m
 - Length 50 km
- Strong applications
 - Oil and gas seismic
 - Pipeline monitoring

Oil & Gas Applications

FOS Milestones:

Oil & Gas Industry Adoption

- Launch in offshore platform sector- first commercial systems in 2000; growth through market adoption.
- Offered in traditional supply chain: major oilfield services companies: BHI, HAL, SLB, & WTF.
- 2014 Market Size ~\$400MM (installed system hardware and retrievable surveys).
- Raman DTS most prevalent sensor.
- Operation of sensor platform to 300°C.

Fiber Optic Sensors in Oil & Gas

Sensors for Downhole Monitoring

- Pressure
- Temperature
- Flow Rate
- Phase Fraction
- Seismic
- Strain
- Sand
- Paraffin
- Chemical
- Density

Commercially Available

Horizon

Concept Phase

Source: Weatherford

DTS - SAGD

- Steam Assisted Gravity Drainage (SAGD) is an enhanced oil recovery technology for producing heavy crude oil utilizing steam injection
- 80% of oil sands require enhanced recovery techniques such as SAGD
- Optimizing steam management optimizes reservoir production, reduces costs and limits emission
- Monitoring the temperature profile of the steam chamber growth is key to process and efficiency improvements
- Distributed fiber optic temperature sensing systems have provided the monitoring capability

Source: Petrospec

Advent of Permanent Ocean Bottom Cable (OBC) Seismic Systems

•Seismic reservoir management tool to optimize production

- Major franchises formed
 - Optical System
 - Deployment
 - Interpretation
 - Oil Company Sponsors
- Fiber Optics: reach, channel count; reliability
- Early growth stage
- Between \$20-50M cost per field to customer
- Large incremental growth potential

Courtesy Petroleum Geo-Services

Source - Qorex

Pipeline Distributed Fiber Optic Monitoring System

•Fiber optic interferometric array monitors Interferometric and DAS about 25 Multiple Jorger DTS and DTS systems have been used to monitor through aviates temperature drop

•In evaluation trials

Source: Sabeus

Pipeline Leak Detection (Distributed Brillouin Scattering)

(a)

Source: Omnisens

DAS Acoustic Signatures

Source: OptaSense

Magnetic and Electric Field Sensors

Fiber Optic Magnetic Field Sensor Architectures

Faraday Rotating Optic Attached Polarizing Optics

ensor with Piez Coatings

Biophotonic Sensors

Biosensor Concept

Biophotonic Interaction Modulated Mach-Zehnder Interferometer

Reference arm

Evanescent Wave Fluoroimmunoassay Concept

Fiber Optic Enabled Arrays using Fluorescence for High Speed Screening

Fluorescent Array Microsphere Vapor Sensors

Figure 16.14 Fluorescent Array Microsphere Vapor Sensors¹⁰

Gyroscopes

Sagnac Effect in a Coiled Fiber Used for Rotation Rate Sensing.

Initial position – No phase shift associated with counter propagating waves

Noise Sources in an Optical Fiber Gyroscope

Typical Precision FOG Design

Northrop Grumman Commercial Inertial Measurement Unit (IMU) with Three Fiber Optic Gyroscopes

Market

FO Sensor Market:

Single-Point Sensing

2008

Distributed Fiber Optic Sensor Applications

Distributed Fiber Optic Sensor Market Forecast: By Application

Future Market Opportunities:

- Low cost sensors/instrumentsà all applications & markets
- Disposable sensorsà medical & health care
- Distributed sensorsà oil & gas, smart structures
- Smart fabricsà geotechnical, medical, aerospace
- Food industryà water & food safety
- Environmentalà gas sensing/emissions monitoring, pollution detection and monitoring

Future Possibilities: Optical Integrated FOS

More:

- Functionality
- Capability
- Reliability

Less:

- Space
- Power
- Cost

Multiple complementary optical systems can be place on a single chip and packaged into a small size, light weight, low power package:

Conclusions

- The FOS field initiated the transition from lab to commercialization since the early 80's.
- Initial products have targeted military and harsh environment applications (gyro, hydrophones, oil & gas, HV sensing).
- Commercialization cycles are long, needing 5-20yrs of development
- Several FOS products have reached maturity and reached commercial success: FOG, DTS, DAS, FBG sensors, etc.
- The Distributed FOS market was ~\$630 million in 2014 and projected to be \$1042 million in 2019. The oil and gas sector represents 46% of the total market
- The FOS Industry, in general, was blind-sided by the sudden surprise drop in oil prices in early 2015.

Contacts

- David Krohn
 - <u>dkrohn@lightwaveventure.com</u>
 - 203-248-1475
- Fiber Optic Sensors Fundamentals and Applications, Fourth Edition, 2014
 - Available at www.spie.org
- Photonic Sensor Consortium Market Survey -Distributed Fiber Optic Sensing Systems Forecast
 - Available at Information Gatekeepers hpan@igigroup.com