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Abstract
The emergence of next generation VR and AR de-
vices like the Oculus Rift and Microsoft HoloLens
has increased interest in using mixed reality (MR) for
simulated training, enhancing command and control,
and augmenting operator effectiveness at the tactical
edge. It is thought that virtualizing mission relevant
battlefield data, such as satellite imagery or body-
worn sensor information, will allow commanders and
analysts to retrieve, collaborate, and make decisions
about such information more effectively than tradi-
tional methods, which may have cognitive and spa-
tial constraints. However, there is currently little
evidence in the scientific literature that using mod-
ern MR equipment provides any qualitative benefits
or quantitative benefits, such as increased task en-
gagement or improved decision accuracy. There are
also no validated metrics in the field for comparing
across display devices and tasks. In this paper, we
surveyed potential metrics for assessing the usefulness
of MR technologies, discuss how these data might be
acquired in experimental and tactical scenarios, and
pose issues in multi-user communication and collabo-
ration. We also introduce the Mixed Reality Tactical
Analysis Kit (MRTAK), which functions as an exper-
imental platform to perform these assessments during
collaborative mission planning and execution.

1 Background
The modern battlefield and Army operational envi-
ronment is becoming more varied and dynamic, with
a greater reliance on the integration of information
from intelligent things/devices, agents, and systems.
Information overload caused by multitasking and mis-
sion execution at standoff remain significant chal-
lenges in C3I scenarios. The integration of infor-
mation for decision making and other mission com-
mand tasks is often still done using discrete and dis-

parate systems (physical objects, computers, paper
documents, etc.) that require a significant amount
of resources and effort to bring into a unified space.
Human interactions require shared cognitive mod-
els where interaction with systems must support and
maintain this shared representation, stored informa-
tion must persist the representation at a fundamen-
tal data-level, and the underlying network must allow
these data and information to flow without hindrance
between human collaborators and non-human agents
(1; 2).

The emergence of Mixed Reality (MR) technolo-
gies has provided the potential for new methods for
the Warfighter to access, consume, and interact with
battlefield information. MR may serve as a unified
platform for data ingestion, analysis, collaboration,
and execution and also has the benefit of being cus-
tomized based on the mission needs and requirements
of each operator (see Figure 1). MR lies in the
Reality-Virtuality Continuum between the physical
and the digital world (3). Augmented Reality (AR)
and Virtual Reality (VR) exist at the extremes of
the MR spectrum, as shown in Figure 2. Where AR
superimposes generated content over the real world,
VR occludes the real world entirely to present some-
thing entirely fabricated. Each of these immersive
technologies has benefits and drawbacks, but there
has been limited research exploring what these are
beyond speculation. Importantly, MR ensures a vi-
sual connection to the physical world, while utilizing
elements that may be superimposed on reality or oc-
cluding it completely with a purely virtual rendering
of information and objects. Thus, MR may serve as
a medium to integrate data from sensors monitoring
the real world, with the ability to perceive and reason
on this information without many of the spatial and
physical constraints of currently used C3I systems.

The recent increase in the ease of access to mod-
ern high-fidelity head-mounted displays has caused a
resurgence in interest for using immersive technolo-
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Figure 1: Information flow between forward operators and analysts using immersive display devices.

gies in the Private and public sectors. Consequently,
the “cool factor” associated with VR and AR tech-
nologies has become a common reason for their adop-
tion, with little empirical data backing this up. Sim-
ilar issues have been found in adding gamified ele-
ments to training, which can be completely ineffec-
tive or simply less effective than less engaging tradi-
tional methods. With respect to command and con-
trol, prior work has shown that novel interfaces that
support decision making have traditionally been chal-
lenging for users to understand and interpret (4). Ad-
ditionally, there is little evidence in the literature of
the quantitative benefits of using immersive technolo-
gies in operational decision-making, nor are there a
set of tasks and validated measures for assessing opti-
mality. Here, we review the limited current literature
that have attempted to address this issue with re-
spect to evaluation and communication in MR, and
discuss how the MRTAK project seeks to build upon
this work as a sandbox for immersive C3I research.

Figure 2: Mixed reality technology spectrum.
Adapted from Milgram (3)

1.1 Evaluation of Immersive Tech-
nologies

Recently, this area of research has been referred to as
“Immersive Analytics” (5). Chandler and colleagues
suggest five major topic areas: 1) What paradigms
are enabled by immersive technologies and how do
we evaluate them over other traditional mediums and
each other?, 2) Do these technologies provide a more
holistic way of looking at data that contains 3D spa-
tial and abstract information?, 3) What are the best
interface “tricks” and affordances that change a user’s
perspective from an allocentric to egocentric view of
the data?, 4) Do these technologies invalidate the
literature on 2D data interaction?, and 5) What is
the typical work-flow for examining data across do-
mains and how do we develop generic platforms to
support immersive analytics? Although each of these
questions is important, here we focus on items one
and two, which pose the more general question of
how should we evaluate the effectiveness of immer-
sive technologies and what data is necessary to per-
form this assessment.

Uses for MR Technology

One area where immersive technologies have been
used extensively is for simulation and training on real-
world tasks. For example, a study by Donalek and
colleagues (6) reported that in a way-point drawing
task, subjects who viewed the environment in an Ocu-
lus Rift HMD performed with less distance and angle
errors than those who viewed the environment on a
2D desk-top monitor. Moran and colleagues (7) cre-
ated an immersive virtual environment where Twit-
ter data was overlaid atop real geography to improve
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the experience for analysts. The authors claimed that
this MR environment enhanced situational awareness,
cognition, and that pattern and visual analytics were
more efficient than on traditional 2D displays. A
study by Dan & Reiner (8) measured performance
differences among subjects who had to complete a
paper folding task after viewing information on a 2D
desktop monitor or through an augmented environ-
ment. Subjects showed a higher cognitive load index
when learning in 2D vs 3D, as measured by the ratio
of frontal theta power over parietal alpha power. This
indicated that information transfer was significantly
easier when the data was viewed in an MR environ-
ment. Other work has shown that the perception of
one’s virtual body and hands is also a critical feature
when performing cognitively demanding tasks, such
as memorization, when done in a virtual environment
(9). This decreased cognitive load may be related to
the fact that humans are “biologically optimized” to
perceive in 3D (6). McIntire and colleagues (10; 11)
reported that use of a 3D stereoscopic display in-
creased task performance by roughly 60% on average.
Recently, it was reported immersive AR was found to
be better when manipulating data that required spa-
tial perception and interactions with a high degree of
freedom (such as tangible user interfaces), but users
were generally faster on the desktop if the task was
familiar (12). Generally, though, these studies pro-
vide limited empirical evidence for which immersive
mediums (VR, AR, MR) are best for improving user
decision making across content domains, and many
do not use similar or easily comparable metrics.

Evaluation Metrics

The issue of evaluation metrics is of critical impor-
tance. In a seminal study by Borsci and colleagues
(13), the authors conducted a review of all existing
studies that performed an assessment between an im-
mersive technology, such as AR and VR, and a tradi-
tional, such as a desktop monitor, or between different
immersive devices. They list nine evaluation crite-
ria used previously in the field: 1) Cognitive skills 2)
visuo-spatial abilities 3) Levels of trust/acceptance of
VR/MR tools and motivation in use, 4) Participants
attitude, 5) Previous experience, 6) motion sickness,
7) physiological Reactions (attention shift, cognitive
load, stress) 8)Level of presence and engagement, and
9) Technical aspects and tools. Studies also reported
using pre-training assessments and demographic mea-
sures, task performance assessments, varying experi-
mental conditions, and assessing post-training crite-
ria, typically through questionnaires. Across the lit-
erature surveyed, the degree of overlap varied signif-

icantly and the authors felt that researchers focused
solely on assessing time and task errors that they
failed to measure for critical effects such as motion
sickness, decay and recall of skills after immersion,
the level of trust or acceptance of the device, and
the users’ prior attitude, skills, and experience with
similar technologies.

Some studies have shown the importance of the is-
sues brought up by Borsci. For example, it was found
that reported VR system usability was correlated
strongly with a user’s level of trust in that system
(14; 15). These criteria were assessed through vali-
dated metrics such as the System Usability Scale (16)
and Trust in Technology questionnaires (17). Neuro-
physiological surveys have also been shown to corre-
late strongly with performance in immersive environ-
ments. Davison (18) showed that Performance on the
Trail-Making Task A (TMT-A) (19), a task consid-
ered to assess motor speed, was found to be signifi-
cantly related to other measures which also assessed
speed, such as the time taken to complete parking
simulator levels and the time taken to place virtual
objects around a room. Measures of executive func-
tion, such as TMT B performance, was found to be
significantly related to performance on both of these
spatial location tasks. Dennison and colleagues found
that motion sickness caused by immersion in a virtual
environment (VE) greatly impacted the duration to
which participants elected to remain in the VE and
complete decision making tasks (20; 21; 22). Collec-
tively, these studies demonstrate the need to assess
not only the psycho-physiological profiles of intended
users — as measured through questionnaires and pre-
task assessments — but also the potential benefit of
monitoring these states during real time use of im-
mersive technologies, when possible.

1.2 Evaluation of Multi-User Interac-
tion

The majority of scenarios in which MR can be applied
have multiple users. These users can be operating
with the same or different immersive technology, can
be colocated or connected remotely over a network,
and may have access to the same information or only
pieces of it (information symmetry). A task incorpo-
rating multiple participants will be affected, to some
degree, by the communication behaviors among par-
ticipants. Consequently, researchers must consider
these dynamics when determining metrics that assess
the effectiveness of an immersive technology for an
entire scenario or for component tasks. We examined
literature from the field of computer mediated com-
munication (CMC) because interpersonal communi-
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cation, as mediated by virtual environments, is still a
new concept within the VR, AR, and MR fields.

It is first important to consider the research re-
garding the efficacy of various CMC modalities. How
does an observing analyst best share important in-
formation to a squad at the tactical edge? When
bandwidth on a tactical network is limited, or the
likelihood of unwanted third-party observation, in-
terception, or tampering of communications is high,
what is the level of fidelity required to effectively ex-
ecute command and control to complete the mission?
These questions, which are not tied to any specific
technology, are critical factors when assessing how an
immersive medium might help or hinder individuals
in a decision-making scenario.

Currently, there are many theories and models re-
garding CMC (23). Despite this, it is difficult to find
metrics or evaluation frameworks that provide em-
pirical evidence on the efficacy of these CMC modal-
ities. To the best of our knowledge, existing stud-
ies examine only specific CMC modalities and com-
pare them strictly against face-to-face communication
methods. Across these studies, task performance has
been used as the key metric for determining CMC ef-
ficacy (24; 25). It is also important to note that, gen-
erally, the only independent variable in these studies
is the CMC modality. Furthermore, obtaining em-
pirical evidence about task performance becomes in-
creasingly difficult when multiple people are perform-
ing the task together (23). Factors such as the par-
ticipants’ relationship (26), amount of trust in their
teammate (25), and the ability of each individual
to perform their designated portion of the task (27)
can individually and collectively be extremely hard to
control. These factors must be considered both when
designing experimental measures and when evaluat-
ing immersive systems. If a participant does not trust
their counterpart as a valid source of information or
they do not believe that they can competently com-
plete the task, it will likely have a significant effect
on task performance.

After examining the CMC literature, we have a
compiled a list of suggestions for conducting MR user
studies with multiple local or remote users. First, it
is important to create a rigorous study design that
controls for confounding factors. If the experiment is
using task performance to measure both technology
efficacy and communication efficacy, make sure to in-
clude an appropriate number of permutations within
the study design to control for order effects. Second,
consider the participants’ relationship as a factor. A
group of friends and a group of strangers will be-
have and communicate differently, effecting the way
in which they execute the task and how they value

different performance outcomes. Third, include ap-
propriate questionnaires to tap into specific measures
of interest, rather than asking overly generalizable or
vague questions, such as "How did you like the com-
munication system?". A questionnaire determining
a participant’s level of trust in another participant
can be adapted from Rotter (28) and a questionnaire
determining participants’ level of rapport with one
another can be adapted from Puccinelli and Tickle-
Degnen (29), as examples.

2 The Mixed Reality Tactical
Assessment Kit

The U.S Army Research Lab and industry partner
Stormfish Scientific have built a collaborative mixed
reality infrastructure, called the Mixed Reality Tacti-
cal Assessment Kit (MRTAK). The goal of MRTAK
is to allow researchers to perform controlled stud-
ies evaluating how immersive technologies compare
against traditional systems in single and multi-user
operational decision making tasks. MRTAK also will
allow researchers to test and evaluate different net-
work and data management control frameworks. Cur-
rently, we are collaborating with academic partners
at the University of Minnesota, USC Institute for
Creative Technologies, and University of California
Irvine.

The DICE Network

One of the key components of MRTAK is the De-
fense Integrated Collaborative Environment (DICE)
network (30), developed at ARL with Stormfish Sci-
entific. DICE hosts a confidential private network
where collaborative MR services are hosted, and lo-
cal and remote clients can connect to these services
through a secure VPN. A diagram of DICE is shown
in Figure 3. This network was designed to meet rigor-
ous Department of Defense and Army Standards and
uses policy based security so that access can be con-
trolled at multiple-levels of granularity. Thus, DICE
allows for controlled experimentation of how normal
and degraded network conditions, where bandwidth
may be extremely limited, affect different aspects of
multi-user collaboration. For example, consider a sit-
uation where one user is providing navigation to an-
other using complex spatial markers rendered over
an AR display. If the network were to be strained
to the point that image data could no longer be sent
from the edge, researchers could test how teams could
communicate that critical information over alterna-
tive channels until bandwidth was restored.
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Figure 3: Overview of the DICE Network structure.

Sensor Connectivity and Machine Learning

MRTAK is also equipped with a fully synchronized
data source management system. This system al-
lows for ingestion of sensor data from local users or
from external devices such as Internet of Battlefield
Things (IoBT) sensors, and is integrated through the
DICE network. With this system, researchers are
able record data from all aspects of the collabora-
tive decision making process in real time. Moreover,
these data can even be viewed from within the immer-
sive environment as a form of training or feedback.
MRTAK allows for key data to be recorded at each
step of the decision making process, and allows for
experimenters to freely choose which display devices
are used and whether or not the participants are lo-
cal or remote. Similarly, communication among users
via any modality (voice, symbology, tracks) can be
recorded and used for later analysis. The underlying
data framework also makes it easy to run machine
learning applications on data generated from partic-
ipants in the environment or on incoming informa-
tion from external programs or sensors. Thus, models
for value of information (31), information availability
(32), or uncertainty (33) can be integrated and tested
with respect to which display platform or tactical de-
cision they are optimal for.

3 Conclusion

In conclusion, the current literature suggests that im-
mersive technologies may provide a means of improv-
ing certain aspects of operational decision-making.
Future work should aim to report more objective and
precise measurements of task outcomes when compar-
ing different immersive interfaces and, when possible,
include comprehensive assessments of a user’s back-

ground and experience with similar systems. Decision
making tasks should be broken down into key pro-
cessing steps and performance increases or decreases
should be discussed with respect to these elements
and with respect to the overall mission. Physiologi-
cal sensors can also be used to track state informa-
tion that may not be readily accessible through sur-
veys or behavior, such as cognitive load or task en-
gagement. Finally, future work should take special
consideration when designing studies involving mul-
tiple participants and rigorously control for commu-
nication styles, prior relationships, and even cultural
differences.
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