Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

Grant Funds Use of Biology to Advance Quantum Electronics

Photonics.com
Mar 2007
WASHINGTON, March 20, 2007 -- The US Department of Defense has awarded a team of nine professors from six universities $6 million over five years to exploit precise biological assembly for the study of quantum physics in nanoparticle arrays. The research will help to produce a fundamental understanding of quantum electronic systems, which could impact the way future electronics are created.

Leading the effort is electrical and computer engineering professor Richard Kiehl of the University of Minnesota, who has wide experience in investigating the potential of novel fabrication techniques, physical structures and architectures for electronics. Kiehl has brought together a multidisciplinary team to develop biological strategies combining DNA, proteins and peptides with chemical synthesis techniques to construct arrays of nanoparticles and to systematically characterize the resulting quantum electronic systems.

Quantum electronic systems are strongly influenced by interactions both within and between nanoparticles, and are extremely sensitive to the quality and dimensions of the structure.

A nanoparticle array consists of metal particles with a diameter of 0.5 to 5 nm. The interactions among them produce highly correlated behaviors that could lead to exotic quantum physics, as well as to new mechanisms for computing, signal processing and sensing. But even basic studies of such nanoparticle arrays have been hampered by the need to fabricate test structures with extreme control and precision. Most semiconducting devices, such as computer chips, are made from the top down. Patterns are imposed on the material and etched into it. The biological assembly technique aims at building from the bottom up, atom by atom or molecule by molecule.

"By exploiting biology to precisely control size, spacing and composition in the arrays, we will be able to examine electronic, magnetic and optical interactions at much smaller scales than before," said Kiehl. "Our project blends some really fascinating science at the edges of biology, chemistry, materials science and physics. And, I'm excited about the chance to impact how electronic circuits could be engineered in the future."

The team members are UCLA professors Yu Huang (materials science), Kang Wang (electrical engineering) and Todd Yeates (biochemistry); New York University professors Andrew Kent (physics) and Nadrian Seeman (chemistry); University of Texas at Austin professor Allan MacDonald (physics); University of Pennsylvania professor Christopher Murray (chemistry and materials science); and Columbia University professor Colin Nuckolls (chemistry).

Kiehl and Seeman have previously collaborated in the first demonstrations of metallic nanoparticle self-assembly by DNA scaffolding, which will be central to this project. Seeman will exploit DNA nanotechnology to construct 2-D and 3-D scaffolding, while Huang and Yeates will use peptides and proteins to make nanoparticle clusters for assembly onto the scaffolding. Murray and Nuckolls will synthesize metallic and magnetic nanoparticles with organic shells that will self-assemble onto the scaffolding and control the interparticle coupling. Kent, Kiehl and Wang will carry out experiments to characterize the electronic, magnetic and optical properties of the arrays. MacDonald will provide theoretical guidance for the studies and analysis of the experimental results.

The award was announced this week as one of 36 funded under the DoD Multidisciplinary University Research Initiative (MURI) program. The 36 projects total $19.4 million in fiscal 2007 and $207 million over five years. For more information, visit: www.defenselink.mil/releases/release.aspx?releaseid=10585


GLOSSARY
electronics
That branch of science involved in the study and utilization of the motion, emissions and behaviors of currents of electrical energy flowing through gases, vacuums, semiconductors and conductors, not to be confused with electrics, which deals primarily with the conduction of large currents of electricity through metals.
nanoparticle
A small object that behaves as a whole unit or entity in terms of it’s transport and it’s properties, as opposed to an individual molecule which on it’s own is not considered a nanoparticle.. Nanoparticles range between 100 and 2500 nanometers in diameter.  
nanotechnology
The use of atoms, molecules and molecular-scale structures to enhance existing technology and develop new materials and devices. The goal of this technology is to manipulate atomic and molecular particles to create devices that are thousands of times smaller and faster than those of the current microtechnologies.
optical
Pertaining to optics and the phenomena of light.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.