Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

Researchers Record the Entire Life Span of a Photon

Photonics Spectra
Apr 2007
The usual methods of measuring photons destroy them, so they can be measured only once. Now researchers at l’Ecole Normale Supérieure in Paris have developed a nondestructive measurement technique that can be repeated hundreds of times to record the entire history of a single photon.

PTBirth_Mirror.jpg

The heart of the experimental setup is a “photon box,” a cavity made of two superconducting niobium mirrors facing each other in the Fabry-Perot configuration (see figure). It can store a photon for ~0.13 seconds, about the time it takes for a photon to travel a tenth of the distance to the moon.

During the measurement process, a stream of atoms travels between the mirrors, and the presence of a photon slows down the electrons orbiting the atoms. The difference in the rate of the orbiting atoms is measured by two external microwave pulses outside the mirrors.

Unlike conventional detectors, this setup does not absorb photons because the transition energy of the stream of atoms does not match the energy of the photon. This measurement technique is Ramsey interferometry, a method used in modern atomic clocks to compare the clock frequency to the atomic transition frequency. The researchers described this experiment in the March 15 issue of Nature.

As one would expect from the Heisenberg uncertainty principle, the researchers could not know both the amplitude of the field and the phase of the wave with absolute certainty. Of the two variables, they measured the amplitude of the field exactly.

In this experiment, a single photon controls the state of a large number of atoms, an important step toward quantum computing. In the future, the device may record a larger number of photons. It also could be used to prepare quantum superpositions of mesoscopic states that will be useful to study the border between the quantum and classical worlds.


GLOSSARY
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x Subscribe to Photonics Spectra magazine - FREE!