Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

Bottoms Up: Zinc Oxide Glows

Photonics.com
Dec 2008
DURHAM, N.C., Dec. 18, 2008 -- A compound commonly used on babies' bottoms has been made to produce brilliant light best suited to the human eye.

Duke University adjunct physics professor Henry Everitt, chemistry professor Jie Liu and their graduate student John Foreman discovered that adding sulfur to ultrafine powders of commonplace zinc oxide -- a cheap and nontoxic ingredient in suntan lotion and diaper rash creme -- at about 1000 °C allows the preparation to convert invisible ultraviolet (UV) light into a remarkably bright and natural form of white light.

They are now probing the solid-state chemistry and physics of various combinations of those ingredients to deduce an optimal design for a new kind of illumination. Everitt and Liu have applied for a patent on using the preparations as a light source.
DukeZincOxide.jpg
A glowing zinc oxide phosphor, made by Duke graduate student and Army research physicist John Foreman. (Photo: Duke University)
"Our target would be to help make solid-state lighting with better characteristics than current fluorescent ones," said Everitt, who also works with Foreman at the Army's Redstone Arsenal in Huntsville, Ala.

The researchers said they are producing white light centered in the green part of the spectrum by forming the sulfur-doped preparation into a material called a phosphor. The phosphor converts the excited frequencies from an ultraviolet LED into glowing white light.

Nanometer-diameter zinc oxide powders are being prepared by Liu's research group, which focuses on the chemistry of nanomaterials. He is Duke's Jerry G. and Patricia Crawford Hubbard Professor of Chemistry. They are then being tested at the Aviation and Missile Research, Development and Engineering Center at Redstone Arsenal by Everitt, an Army senior research scientist, and Foreman, an Army research physicist.

The researchers are also exploring using electricity alone to trigger the visible emissions without need for a UV light trigger.

The Army has selected the project for priority funding through a competitive In-house Laboratory Independent Research program because of its potential advantages as an energy efficient and safe illumination source.

"One of the objectives is to give soldiers efficient lighting that doesn't run their batteries down," Everitt said. "They need efficiency, brightness, longevity and ruggedness, and this helps with all of those things."

Existing commercial LEDs are already rugged enough to be used in bumper-mounted brake lights, Everitt said.

"They are good enough for decoration and for use in traffic lights, but they don't make good reading lights because they are not of a white color that our eyes use best," Liu said. White LEDs on the market now are costly, short-lived and not truly white, the researchers added.

Because zinc oxide is safe enough to be used on faces or babies' bottoms, it offers major safety advantages over fluorescent bulbs, which happen to contain toxic mercury. "If a fluorescent bulb gets broken in the course of battle, it exposes soldiers to that mercury in addition to its shattered glass," Everitt said.

"I think the biggest payoff for the general public will ultimately be in future energy crises we're certainly going to face," Everitt added. "If we can have more efficient lighting it will reduce our energy requirements."

Scientists have long known that zinc oxide can itself serve as a solid-state UV light source. They have also known that adding sulfur allows it to emit some white light. But Liu, Everitt and Foreman are investigating how nanostructuring and doping improves its performance.

The introduced sulfur is thought to boost wavelength conversions from UV to visible wavelengths by serving as an "impurity" that changes the chemistry and physics of the zinc oxide in ways the Duke researchers are still probing.

Most scientists consider such impurities "defects" that interfere with zinc oxide's ability to produce a stronger UV light, they said. But "we love the defects that other people hate," Everitt said. "That's been the gift of nanostructured doped zinc oxide, emitting what your eye expects white light to look like."

Two years ago, Foreman, Everitt, Liu and co-researchers first disclosed they could induce a formulation of zinc oxide shaped into nanowires to absorb light from a UV laser and re-emit it as a broadband visible emission of unprecedented brightness. The white light component was more than 1000 times brighter than the UV component, they reported. They later began publishing papers exploring how various alterations affect the white light emissions.

"We've learned something about what makes the white light conversion happen, and what makes it happen so efficiently," Everitt said. The Duke team has already achieved efficiencies as high as 80 percent. But there are still technical issues to resolve tied to the operating temperatures of the phosphors and the power from the underlying ultraviolet LED.

"Our challenge has been getting a foundational understanding so we can understand what is physically possible and how close we are to achieving it," Everitt said.

Zinc oxide would be both a less-toxic and cheaper light source than the combinations used in today's commercial LEDs -- gallium nitride and cerium-doped yttrium oxide, they said. Cerium-doped yttrium oxide is also used in today's mercury-containing fluorescent bulbs, Everitt added.

Liu's lab originally stumbled on to the light-emitting potential of sulfur-doped zinc oxide while studying its electronic conductivity. "We just lit it up with an ultraviolet laser and -- whammo -- there was a lot of white light coming out," Everitt said.

For more information, visit: www.duke.edu


GLOSSARY
broadband
Indicating a capability to deal with a relatively wide spectral bandwidth.
light
Electromagnetic radiation detectable by the eye, ranging in wavelength from about 400 to 750 nm. In photonic applications light can be considered to cover the nonvisible portion of the spectrum which includes the ultraviolet and the infrared.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
white light
Light perceived as achromatic, that is, without hue.
Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.