Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

Thermal Signatures Determine Time of Death

Photonics.com
May 2009
During decomposition microorganisms emit different thermal signatures, which can be detected by thermographic imaging. Thermography detects infrared radiation in the electromagnetic spectrum, and when used on decomposing bodies, the thermal growth signatures of microorganisms can be detected.

According to a preliminary study released by Isabel Fernández Corcobado, professor at the Institute of Legal Medicine of Granada, and her colleagues at the University of Granada, these signatures more accurately determine time of death.

Termography.jpg
This is the results of infrared thermography of a corpse. Software courtesy of Alava Ingenieros, S.A. Image courtesy of the University of Grenada.

This new technique, which could prove quite useful for the field of criminology, uses new thermographical and weather measurement tools, while applying traditional microbiological methods for forensic dating.

The stages of cadaverous decomposition and putrefaction can be affected by environmental variations, which can decrease the accuracy of forensic dating. However, the growth of microorganisms on cadavers remains constant, regardless of the environmental conditions. By combining traditional microbiological methods with thermography, the margin of error associated with time of death estimations could seemingly be greatly reduced.

To carry out this work, the researchers analyzed about 240 microorganic samples taken from bodies from the Institute of Legal Medicine of Granada, and 352 samples from living donors. Because only one microorganism was studied in the preliminary research, further testing will be conducted. According to Corcobado, the study has already sparked quite a bit of interest.

The aim of this work is to establish a microbiological indicator to determine the time of death, and to provide new complimentary tools for criminal investigation techniques.

“One of the results of our investigations, is that we’ve detected infrared thermography can be used to substitute traditional mercury thermometers at forensic examinations,” said Corcobado, adding that Flir Systems infrared cameras were used in the preliminary study because of their accuracy (0.08ºC to 30ºC thermal sensibility, according to Corcobado).

In addition to Corcobado, the study was carried out by Miguel Botella López, professor at the Laboratory of Anthropology of the UGR and Eulogio Bedmar Gómez, professor at the Zaidín Experimental Station (CSIC).

Krista D. Zanolli
krista.zanolli@laurin.com

Also see: More Web Exclusives


GLOSSARY
electromagnetic spectrum
The total range of wavelengths, extending from the shortest to the longest wavelength or conversely, that can be generated physically. This range of electromagnetic wavelengths extends practically from zero to infinity and includes the visible portion of the spectrum known as light.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
thermography
The recording of a scanned pattern on a photographic medium, utilizing the infrared radiation naturally emitted by the object, as well as infrared receptors, such as photoelectric cells.
Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.