Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

  • Office of Naval Research Achieves Milestone
Feb 2011
ARLINGTON, Va., Feb. 7, 2011 — Scientists at Los Alamos National Lab in New Mexico have achieved a breakthrough with the Office of Naval Research's Free Electron Laser (FEL) program, demonstrating an injector capable of producing the electrons needed to generate megawatt-class laser beams for the Navy's next-generation weapon system.

"The injector performed as we predicted all along," said Dr. Dinh Nguyen, senior project leader for the FEL program at the lab. "But until now, we didn't have the evidence to support our models. We were so happy to see our design, fabrication and testing efforts finally come to fruition. We're currently working to measure the properties of the continuous electron beams, and hope to set a world record for the average current of electrons."

Quentin Saulter, FEL program manager for ONR, said the implications of the FEL's progress are monumental. "This is a major leap forward for the program and for FEL technology throughout the Navy," Saulter said. "The fact that the team is nine months ahead of schedule provides us plenty of time to reach our goals by the end of 2011."

The research is a necessary step for the Department of the Navy to one day deploy the megawatt-class FEL weapon system, revolutionizing ship defense, Saulter said. "The FEL is expected to provide future US Naval forces with a near-instantaneous laser ship defense in any maritime environment throughout the world."

ONR's FEL project began as a basic science and technology program in the 1980s and matured into a working 14-kilowatt prototype. In fiscal 2010, it graduated from basic research to an Innovative Naval Prototype, earning the backing needed by senior Navy officials to ensure its evolution to advanced technology and potential acquisition.

The laser works by passing a beam of high-energy electrons generated by an injector, through a series of strong magnetic fields, causing an intense emission of laser light. ONR hopes to test the FEL in a maritime environment as early as 2018.

For more information, visit: 

Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.