Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

  • 3-D imaging tracks the insides of single molecules

May 2011
Compiled by BioPhotonics staff

WASHINGTON – A three-dimensional cell imaging method has been developed to study the complex spatial-temporal dynamics of protein transport, a challenging feat in the field of cell biology.

Because of cell-to-cell variations in thickness and the temporal properties of protein transport, scientists have faced many technical challenges trying to image such dynamic processes in the cell and in 3-D. Previous techniques were slow and suffered from poor Z-localization and 3-D tracking capability, say researchers at the University of Texas Southwestern Medical Center at Dallas and the University of Texas at Dallas in Richardson.

Illustrated are the strengths of multifocal plane microscopy over conventional microscopy techniques. Courtesy of S. Ram, UT Southwestern Medical Center.

To overcome the obstacles, the scientists used a combination of multifocal plane microscopy and nanodot labeling technology. They labeled single molecules in live cells and tracked their movement and interaction with other molecules in a thick cell sample over an extended period.

Initially, the technique was developed by the researchers to track the movement of therapeutic antibodies engineered in their lab. Although current microscopy technologies limit scientists to image only a single focal plane at a time, the scientists wanted to simultaneously image a sample across multiple planes.

Their findings, which were funded by the National Institutes of Health and the National Multiple Sclerosis Society, were reported at the 55th Biophysical Society Annual Meeting in Baltimore.

Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x Subscribe to BioPhotonics magazine - FREE!