Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

Space Institute Develops Cancer-Fighting Laser

Photonics.com
Jul 2012
TULLAHOMA, Tenn., July 25, 2012 — A new technique that harnesses the power of femtosecond lasers to seek, acutely map and noninvasively destroy cancerous tumors could benefit brain cancer patients.

The cancer-fighting laser was developed by scientists at the Center for Laser Applications at the University of Tennessee Space Institute, who used a femtosecond laser that focuses on a specific region to find and destroy tumors.

“Using ultrashort light pulses gives us the ability to focus in a well-confined region and the ability for intense radiation,” said Christian Parigger, an associate professor of physics. “This allows us to come in and leave a specific area quickly so we can diagnose and attack tumorous cells fast.”

After the cancerous area is precisely targeted, the intensity of the laser radiation can be turned up to irradiate, or burn off, the tumor. This method has the potential to be more exact than current techniques, and to be carried out as an outpatient procedure.

“Because the femtosecond laser radiation can be precisely focused both spatially and temporally, one can avoid heating up too many other things that you do not want heated,” Parigger said. “Using longer laser-light pulses is similar to leaving a lightbulb on, which gets warm and can damage healthy tissue.”

The new technology can be especially useful for treating brain cancer patients because it can noninvasively permeate thin layers of bone, such as the skull, and help define a targeted treatment strategy for persistent cancer.

The method also overcomes the restrictions posed by current radiation treatments that damage portions of healthy brain tissue. It could also overcome the limitations of photodynamic therapy that have limited its acceptance, and it could replace surgical options that are unable to remove all carcinogenic tissue.

“If you have a cancerous area such as in the brain, the notion is if you see something and take care of it, it won’t spread,” Parigger said. “This treatment overcomes difficulties in treating brain cancer and tumors. And it has the promise of application to other areas as well.”

The team is currently working with the University of Tennessee Research Foundation to bring the technology to market.

For more information, visit: www.utk.edu


GLOSSARY
irradiation
Application of radiation to an object.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.