Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

Optogenetics Protein Mechanics Characterized

Photonics.com
Jul 2015
SANTA CRUZ, Calif., July 15, 2015 — Researchers at the University of California, Santa Cruz, have identified the molecular mechanism involved in the light-induced activation of channelrhodopsins — a discovery that could help scientists create proteins optimized for optogenetics.

Optogenetics uses light stimulation to map and control nerve cells to enable study of the brain's neural circuitry. Offering unprecedented insight into the human brain, this field's technologies are reliant on light-sensitive proteins.

David KligerThe researchers used time-resolved absorption spectroscopy in the 340- to 650-nm range to study the function of channelrhodopsin-2. Originally found in a type of marine algae and now widely used in optogenetics experiments, the protein controls the flow of ions across cell membranes, activating or deactivating different cellular functions when stimulated by light.

"Little was known about the functional mechanism of these proteins even though they are widely used in optogenetics," said professor David Kliger. "It is exciting because this opens up a methodology to start selecting mutant proteins with properties optimized for optogenetics, which is important for brain research and for studying neurological processes in general.”

There are several types of modifications that could be useful for optogenetics, Kliger said, such as making the proteins more efficient so less light is needed to trigger currents in neurons. In some cases, researchers might want to speed or slow the channel opening, or they might want to speed or slow the channel closing. Depending on the tissues being studied, they might also want to shift the spectrum of light required to activate the protein.

The research was published in The Journal of Biological Chemistry (doi: 10.1074/jbc.M114.631614 and 10.1074/jbc.M115.653071).

For more information, visit www.ucsc.edu.


GLOSSARY
optogenetics
A discipline that combines optics and genetics to enable the use of light to stimulate and control cells in living tissue, typically neurons, which have been genetically modified to respond to light. Only the cells that have been modified to include light-sensitive proteins will be under control of the light. The ability to selectively target cells gives researchers precise control. Using light to control the excitation, inhibition and signaling pathways of specific cells or groups of cells...
Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.