Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

Fast Ignition Proposed for Inertial Confinement Fusion

Photonics Spectra
Apr 2001
Two groups have independently reported fast-ignition techniques for inertial confinement fusion, which drives the implosion of capsules of deuterium and tritium with laser or ion beams, either directly or with x-rays produced in a target hohlraum. Fast ignition uses a precompressed target to lower the energy requirements on the ignition pulses.

In the Jan. 15 issue of Physical Review Letters, an international team of researchers working with the Petawatt laser at Lawrence Livermore National Laboratory in Livermore, Calif., describe how energetic protons produced in the laser ionization of target foils can serve as the ignition spark. They targeted 100-µm-thick gold and plastic foils with 600-J, 0.5-ps pulses of infrared light from Petawatt, yielding up to 1013 protons in a 30-J beam within a few hundred microns of the target.

Researchers at Darmstadt University of Technology in Germany have simulated the effects of depositing laser energy on the corona of a target. Reporting in the Feb. 5 issue of Physical Review Letters, they suggest that the pulse forms a burn wave that propagates through the fuel pellet, reducing the required ignition energy to 10 kJ, or even to 3 to 5 kJ if there is no ballistic transport in the core.


Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x Subscribe to Photonics Spectra magazine - FREE!