Search
Menu
Lumencor Inc. - Power of Light 4-24 LB
Photonics Marketplace
24 articles

Photonics Handbook

Clear All Filters xAD to DA conversion x
Tunable Light Sources: A Popular Choice for Measurement ApplicationsTunable Light Sources: A Popular Choice for Measurement Applications
VICKI LU and JOHN PARK, PhD, MKS/Newport
Many common spectroscopic measurements require the coordinated operation of a detection instrument and light source, as well as data acquisition and processing. Integration of individual components...
Aspheric Lenses: Optimizing the DesignAspheric Lenses: Optimizing the Design
Jeremy Govier, Edmund Optics Inc.
With the understanding of aspheric lens manufacturing provided in part one of this article, designers have the tools to optimize their aspheres; the next step is to understand how to specify and...
Selecting a Photodetector: Using WITS$ as a Rough GuideSelecting a Photodetector: Using WITS$ as a Rough Guide
Earl Hergert and Slawomir Piatek, Hamamatsu Corporation
Light is a versatile tool for investigating physical and chemical processes in nature. Any specific system being analyzed may, through the light it emits or reflects, communicate information about...
Lasers for Microscopy: Major TrendsLasers for Microscopy: Major Trends
Marco Arrigoni, Nigel Gallaher, Darryl McCoy, Volker Pfeufer, Matthias Schulze, and Daniel Callen, Coherent Inc.
Laser development for the microscopy market continues to be driven by key trends in applications, which currently include superresolution techniques, multiphoton applications in optogenetics and...
Physical Constants & Conversion FactorsPhysical Constants & Conversion Factors
Physical Constants & Conversion Factors Length [I] 1 meter (m) = 39.3700 in. = 3.280833 ft = 1.093611 yd 1 kilometer (km) = 0.6213711 mi = 0.53996 nautical mi 1 micron (µm) =...
Diode-Pumped Lasers: Performance, Reliability Enhance ApplicationsDiode-Pumped Lasers: Performance, Reliability Enhance Applications
Arnd Krueger and Scott White, MKS/Spectra-Physics
Neodymium-doped crystals and glasses such as Nd:YAG (neodymium:yttrium aluminum garnet) have long been used as laser gain materials. Optically pumped, they produce an output wavelength close to 1...
Lasers: Understanding the BasicsLasers: Understanding the Basics
Coherent Inc.
Over 60 years have passed since the first demonstration of a laser in 1960. After the initial spark of interest, lasers were for a while categorized as “a solution waiting for a problem,”...
Image Intensification: The Technology of Night VisionImage Intensification: The Technology of Night Vision
Harry P. Montoro, ITT Night Vision
Image intensification, the basis of night vision, is a complex conversion of energy particles that occurs within a vacuum tube. An image-intensifier system works by collecting photons through an...
Detectors: The Charge Injection AlternativeDetectors: The Charge Injection Alternative
Tony Chapman, Thermo Fisher Scientific Inc., CIDTEC Cameras & Imagers
Charged-injection device imagers are metal-oxide semiconductor (MOS) detectors that can be fabricated using PMOS, NMOS and CMOS integrated circuit technology, and may be configured as a...
Excimer Lasers: Photonic Stamps with Micron ResolutionExcimer Lasers: Photonic Stamps with Micron Resolution
Coherent, Inc.
Excimers are pulsed gas lasers that deliver high output power and pulse energies in the ultraviolet and deep-ultraviolet wavelengths. This enables them to power applications that cannot be supported...
Detectors: CCDs for Life-Science ApplicationsDetectors: CCDs for Life-Science Applications
Butch Moomaw, Hamamatsu Corporation, Systems Div.
Since their invention in the late 1960s, charge-coupled devices, also called CCDs, have found widespread use in imaging applications. Electronic cameras based on CCD technology are used in...
Density to Percent Transmission Conversion TableDensity to Percent Transmission Conversion Table
Density – % Transmission (Opacity x % Transmission = 100) Density Opacity %T 0 1.0 100 0.1 1.3 80 0.2 1.6 63 0.3 2.0 50 0.4 2.5 40 0.5 3.2 32 0.6 4.0 25 0.7 5.0 20 0.8 6.3 16 0.9 8.0 13...
Photometry: The Answer to How Light Is PerceivedPhotometry: The Answer to How Light Is Perceived
Photo Research, Inc.
That portion of the spectrum that the eye can see — and its rainbow of colors — is rather small, covering approximately 360 to 830 nm. What colors we perceive depends on wavelength, while...
Photonics Packaging: Optical Communication ComponentsPhotonics Packaging: Optical Communication Components
Torsten Wipiejewski, VNT Management Oy, German Office
Photonic components are key elements for the information technology (IT). Photonics technology covers the generation of information (cameras, sensors), its transportation (optical communication),...
Ultraviolet Reflectance Imaging: ApplicationsUltraviolet Reflectance Imaging: Applications
Dr. Austin Richards, Oculus Photonics
Reflected-ultraviolet imaging is a rather mysterious area of the imaging field. There is relatively little actual UV imagery to be found on the Internet or in the literature compared to near-infrared...
Tunable Lasers: Generating Wavelengths from the UV Through the IRTunable Lasers: Generating Wavelengths from the UV Through the IR
Ian Read, MKS/Spectra-Physics
Applications facilitated by tunable lasers fall into two categories: situations in which one or more discrete wavelengths are not available from any single- or multiline fixed-wavelength laser, or...
Spectroscopy: The Tools of the TradeSpectroscopy: The Tools of the Trade
Dr. John R. Gilchrist, Clyde HSI
All optical spectrometry techniques rely on the measurement of radiant power. The configuration of the instrument varies based on the measurement technique: absorption, emission, luminescence, or...
Quantifying Light: Intensity, Uniformity Hold the KeyQuantifying Light: Intensity, Uniformity Hold the Key
Steven Giamundo, Fiberoptics Technology, Inc.
Intensity and uniformity can be described using different physical attributes, which makes interpreting requirements somewhat confusing. This article intends to provide an explanation and serve as a...
Infrared System Design: Understanding the ProcessInfrared System Design: Understanding the Process
William L. Wolfe, Professor Emeritus, University of Arizona, Optical Sciences Center
Infrared system design is not, like some circuit design, a synthetic process. One cannot start by stating the problem and proceeding in an orderly fashion to a final solution. Rather, we guess a...
Image Processing: Turning Digital Data into Useful InformationImage Processing: Turning Digital Data into Useful Information
William Silver, Cognex Corp.
Images are produced by many means: cameras, x-ray machines, electron microscopes, radar and ultrasound. They are used in the entertainment, medical, scientific and business industries; for security...
High-Speed Video: Selecting a Slow-Motion Imaging SystemHigh-Speed Video: Selecting a Slow-Motion Imaging System
Andrew Bridges, Photron USA, Inc.
There is a growing market for imaging systems that provides an immediate, slow-motion view of a process that allows one to see events that happen too quickly for the human eye to perceive or...
Solid-State Lasers: Lower Noise Means Higher PerformanceSolid-State Lasers: Lower Noise Means Higher Performance
Kenneth Ibbs and Alex Laymon, DPSS Lasers, Inc.
Many linear materials proceseqsing applications call for lasers with continuous-wave (CW) output. For example, early stereolithography systems were based on CW lasers such as argon-ion or HeCd. To...
Semiconductor Lasers: An Overview of Commercial DevicesSemiconductor Lasers: An Overview of Commercial Devices
JDSU
Laser diodes vary widely in their wavelengths, powers, spectra and beam quality. Yet they share two fundamental components with all other lasers: an optical amplifier and a resonator that confines...
The VCSEL Advantage: Increased Power, Efficiency Bring New ApplicationsThe VCSEL Advantage: Increased Power, Efficiency Bring New Applications
L. Arthur D’Asaro, Jean-Francois Seurin and James D. Wynn, Princeton Optronics, Inc.
Unlike an edge emitter, a VCSEL has a maximum operating power that is not limited by catastrophic optical damage of the exit aperture because its aperture is larger and its PN junction does not...
Photonics Handbook

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.