Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn

Optical Tools for Mapping and Fixing Complex Biological Systems

Jul 1, 2015

ABOUT THIS WEBINAR

Complex biological systems like the brain present a challenge: their molecular building blocks are organized with nanoscale precision, but support physiological processes and computations that occur over macroscopic length scales. We are creating tools to enable the mapping and repair of such complex systems.

First, we have developed a method for imaging large 3-D specimens with nanoscale precision. We embed a specimen in a swellable polymer, which upon exposure to water expands isotropically in size, enabling conventional diffraction-limited microscopes to do large-volume nanoscopy. Second, we have collaboratively developed strategies to image fast physiological processes in 3-D with millisecond precision, and used them to acquire neural activity maps throughout small organisms. Finally, we have developed a set of genetically encoded reagents, known as optogenetic tools, that when expressed in specific neurons, enable their electrical activities to be precisely driven or silenced in response to millisecond pulses of light.

In this way we aim to enable the systematic mapping, dynamical observation and control of complex biological systems like the brain.

Presenter Ed Boyden is an associate professor of biological engineering and brain and cognitive sciences at the MIT Media Lab and the MIT McGovern Institute. He leads the Synthetic Neurobiology Group, which develops tools for analyzing and engineering the circuits of the brain. Among other recognitions, he has received the Grete Lundbeck "Brain" Prize, the largest brain research prize in the world, for his work developing optogenetic tools for controlling neurons with light.

Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.