Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
SPECIAL ANNOUNCEMENT
Coming Soon: The NEW Photonics.com

New One-step Fabrication Technique Yields Ultrathin Flat Lenses

Facebook Twitter LinkedIn Email
An international team of researchers has developed a method of fabricating high-performance lenses in monolayer two-dimensional transitional metal dichalcogenide (TMDC) material using a femtosecond laser. The lens has a subwavelength resolution and a focusing efficiency of 31%, which marks a step closer to ultimately thin optical devices for use in nano-optics and on-chip photonic applications.

The team, led by Baohua Jia of the Swinburne University of Technology, Qiaoliang Bao formerly of Monash University, and Chengwei Qiu of the National University of Singapore, discovered that it is possible to generate nanoparticles by using a femtosecond laser beam to interact with the monolayer TMDC material, which is significantly different from the process produced by a continuous-wave laser.
Schematic of femtosecond laser fabrication of a monolayer TMDC lens. Inset: (i) AFM image of a monolayer TMDC single crystal, and (ii) Schematic of femtosecond laser-induced generation of MOx nanoparticles. Courtesy of Han Lin et al.
Schematic of femtosecond laser fabrication of a monolayer TMDC lens. Inset: (i) AFM image of a monolayer TMDC single crystal, and (ii) schematic of femtosecond laser-induced generation of MOx nanoparticles. Courtesy of Han Lin et al.


The technique, Jia said, opens up new possibilities in the fabrication of photonic devices, as the method is scalable. The technique is a one-step process and does not require a vacuum or other special environments.

Because the laser pulse is so short, the material remains cold, allowing the nanoparticles to attach firmly to the substrate. The nanoparticles showed strong scattering to modulate the amplitude of light, which allows the lens to provide high efficiency and subwavelength resolution. The team was then able to demonstrate diffraction-limited imaging using the lenses.

“We have used the thinnest material in the world to fabricate a flat lens, and prove that the good performance of the ultrathin lens can lead to a high-resolution image,” said Han Lin, first author on the study.

Though lenses made from multilayer TMDCs have been demonstrated before, when their thickness is reduced to the subnanometer scale, their insufficient phase or amplitude modulation results in focusing efficiencies of less than 1%.

“It shows enormous potential in different applications, such as eyeglasses, microscopy lenses, telescopes, and camera lenses,” Lin said. “It is foreseeable that by using this technique, the weight and size of camera lenses can be significantly reduced in the near future.”

The research was published in Light: Science & Applications (www.doi.org/10.1038/s41377-020-00374-9).

Photonics Spectra
Oct 2020
GLOSSARY
lens
A transparent optical component consisting of one or more pieces of optical glass with surfaces so curved (usually spherical) that they serve to converge or diverge the transmitted rays from an object, thus forming a real or virtual image of that object.
Research & TechnologyOpticschalcogenidedichalcogenidestransitional metal dichalcogenideTMDCnano-opticfemtosecond lasersoptical fabricationmetalensultrathin opticslenslensesImagingTech Pulse

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.