Search
Menu
Photonics HandbookTechnology News

Dark Autoionizing States Enhance EUV Laser Power

Facebook X LinkedIn Email
JOEL WILLIAMS, ASSOCIATE EDITOR
[email protected]

Researchers led by Tsuneyuki Ozaki and François Légaré at the Institut national de la recherche scientifique (INRS) in Quebec have developed a method that could bring extreme ultraviolet (EUV) femtosecond lasers out of synchrotron facilities and onto the optical table. The technique, based on high-order harmonic generation (HHG), enhances the power of a laser source emitting EUV light pulses by a factor of 10. The underlying mechanism involves the role of dark-autoionizing states through coupling with other pertinent electronic states.

In addition to providing an intense light source, the work and developed technique allowed the team to study the ultrafast dynamics of a single dark autoionizing state at the femtosecond timescale, which was previously impossible due to its inability to undergo single-photon emission or absorption, combined with the ultrashort lifetime of these states.

Such dark states could be the basis of several quantum technologies, especially in improving the performance of quantum computers.

“The ability to study dark autoionizing states is significant because it can provide insights into the fundamental behavior of matter on very short timescales,” Mangaljit Singh, a postdoctoral researcher in Tsuneyuki’s lab at INRS and first author of the study, told Photonics Media.

According to Singh, in atomic physics, a dark state refers to a state of matter that cannot emit or absorb light due to certain selection rules. “This means that the state cannot be directly observed through standard spectroscopic techniques, making it difficult to study its properties and dynamics,” Singh said.
An international research team led by Professors Tsuneyuki Ozaki and François Légaré at the Institut national de la recherche scientifique (INRS) in Canada, has developed a unique method to enhance the power of a laser source emitting extreme ultraviolet light pulses. Courtesy of INRS.

An international research team led by professors Tsuneyuki Ozaki and François Légaré at the Institut national de la recherche scientifique (INRS) developed a method to enhance the power of a laser source emitting EUV pulses. The method supports the transition of bringing intense EUV laser sources from large-scale facilities to the laser laboratories. Courtesy of INRS.

Autoionizing states, Singh said, are states that can decay into a lower energy state by ejecting an electron. These states have a lifetime measured in femtoseconds, which further complicates their study.


The current work uses HHG to enable the study of these states, an optical phenomenon unconventional to laser physics. High-order harmonic generation for EUV light sources typically uses noble gases to convert visible or long infrared wavelength intense laser pulses into EUV pulses. However, due to the underlying nonlinearity of the high-order harmonic generation process, the EUV conversion efficiency is low, typically less than 0.0001%.

In the current study, rather than noble gases, the researchers used a plume obtained from the laser ablation of a solid material, which they called a laser-ablated plume, for the HHG in sync with the unique response of dark autoionizing states. Under certain resonance conditions governed by the laser parameters and the electronic structure of the atomic and ionic species in the laser-ablated plume, the conversion efficiency, and therefore the power of the EUV laser source, can be enhanced by more than tenfold.

“This implies that using our method, the same extreme ultraviolet power can be obtained using the primary laser power that is one-tenth of the power required for a typical noble gas,” Singh said.

The results are a step forward, not just in understanding the behavior of dark autoionizing states under intense ultrafast laser-matter interactions, but in bringing intense EUV laser sources from large-scale synchrotron and free-electron laser facilities to the moderate-size laser laboratories, Singh said.

The research was published in Physical Review Letters (www.doi.org/10.1103/PhysRevLett.130.073201).


Published: April 2023
Glossary
quantum
The term quantum refers to the fundamental unit or discrete amount of a physical quantity involved in interactions at the atomic and subatomic scales. It originates from quantum theory, a branch of physics that emerged in the early 20th century to explain phenomena observed on very small scales, where classical physics fails to provide accurate explanations. In the context of quantum theory, several key concepts are associated with the term quantum: Quantum mechanics: This is the branch of...
high harmonic generation
High harmonic generation (HHG) refers to a nonlinear optical process in which intense laser light interacts with a gaseous medium, typically an atom or a molecule, to produce harmonics of the incident laser frequency. The harmonics generated in this process have frequencies that are multiples of the original laser frequency, and they are in the extreme ultraviolet (XUV) or soft x-ray range of the electromagnetic spectrum. The HHG process usually involves a strong laser field ionizing the...
noble gas
A monatomic, chemically inert gas such as argon, neon, krypton and xenon.
extreme ultraviolet
Extreme ultraviolet (EUV) refers to a specific range of electromagnetic radiation in the ultraviolet part of the spectrum. EUV radiation has wavelengths between 10 and 124 nanometers, which corresponds to frequencies in the range of approximately 2.5 petahertz to 30 exahertz. This range is shorter in wavelength and higher in frequency compared to the far-ultraviolet and vacuum ultraviolet regions. Key points about EUV include: Source: EUV radiation is produced by extremely hot and energized...
Research & TechnologyLasersOpticsquantumspectroscopyhigh harmonic generationdark autoionizing statesnoble gasextreme ultravioletEUVINRSInstitut National de la Recherche ScientifiqueAmericasLight SourcesTechnology News

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.