Photonics HandbookResearch & Technology

Holographic Color Prints Combine Phase and Amplitude Control of Light for Better Optical Security

Facebook X LinkedIn Email
SINGAPORE, Jan. 10, 2019 — A new optical anticounterfeiting device, called “holographic color prints” by its developers at the Singapore University of Technology and Design (SUTD), provides a dual function to increase security and deter counterfeiting. The device creates images that appear as a regular color print under white light. But under red, green, or blue laser illumination, the device can project up to three different holograms. It is able to modulate both the phase and amplitude of light.

Enhanced optical security provided by a six-color holographic color print. Courtesy of SUTD.
Enhanced optical security provided by a six-color holographic color print. Courtesy of SUTD.

Conventional optical security devices provide authentication by manipulating a specific property of light to produce a distinctive optical signature. Microscopic color prints modulate the amplitude, whereas holograms typically modulate the phase of light. This relatively simple structure can be easily imitated, the researchers believe.

To provide its device with dual capabilities, the SUTD team designed a pixel that overlays a structural color element onto a phase plate to control both the phase and amplitude of light, and arrayed these pixels into monolithic prints. Each pixel, strategically arranged on a plane, acts as a “speed bump” to provide the phase control and as a “roadblock” to provide the amplitude control for light. Nanostructured posts of different heights are used as structural colored filters to modulate the amplitude of light. The team developed a computer algorithm that takes multiple images as its input and generates an output file to determine the positions of different phase and colored filter elements.

A holoscopic print was then sculpted with the aid of a nanoscale 3D printer. The team used Luigi Russolo’s painting "Perfume" (1910) as a color print that is viewable under ambient white light. Different thicknesses of polymerized cuboid were used to modulate the phase plates and form three multiplexed holograms, projected as a red thumbprint, a green key, and blue lettering that reads “SECURITY.” All three images were embedded within the single print.

According to the team, the holographic color prints can be readily verified but are challenging to emulate. The new holographic color printing device could provide an enhanced, fresh approach to securing documents and deterring counterfeiters. “The relationship of holograms in combating counterfeiting is analogous to antibiotics against infections,” said professor Joel Yang. “Every so often, new technology is needed to deter counterfeiters as the old-fashioned holograms become easier to copy.”

The prints, which consist of nano-3D-printed polymer structures, could find particular use in optical document security. Information in the prints is encoded only in the surface relief of a single polymeric material, so nanoscale 3D printing of customized masters that could then be mass-manufactured by nanoimprint lithography is possible.

“For the first time, multiple holograms that are color selective are ‘woven’ into a colorful image using advanced nanofabrication techniques,” Yang said. “We are hopeful that these new holographic color prints are user friendly but counterfeiter unfriendly: They are readily verified but challenging to copy, and can provide enhanced security in anticounterfeiting applications.”

The research was published in Nature Communications (

Published: January 2019
Holography is a technique used to capture and reconstruct three-dimensional images using the principles of interference and diffraction of light. Unlike conventional photography, which records only the intensity of light, holography records both the intensity and phase information of light waves scattered from an object. This allows the faithful reproduction of the object's three-dimensional structure, including its depth, shape, and texture. The process of holography typically involves the...
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
integrated optics
A thin-film device containing miniature optical components connected via optical waveguides on a transparent dielectric substrate, whose lenses, detectors, filters, couplers and so forth perform operations analogous to those of integrated electronic circuits for switching, communications and logic.
Research & TechnologyeducationAsia-PacificSingapore University of Technology and DesignImagingLasersLight SourcesMaterialsOpticsholographyanti-counterfeit deviceholographic deviceholographic color printingsecurityConsumernanointegrated opticsphotonic devicesmetamaterialshologramsholoscopic imageanticounterfeiting deviceanticounterfeit device

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.