Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Plasmonics-Based Light Detector Could Support Precision Agriculture

Facebook Twitter LinkedIn Email Comments
A new, broad-spectrum photodetector that can be implemented on a single chip has been developed at Duke University. The photodetector spans a range of light frequencies by using on-chip spectral filters created with electromagnetic materials. The camera’s technology is based on plasmonics — the use of nanoscale physical phenomena to trap specific frequencies of light.

For their plasmonics-based approach to building a thermal camera with an on-chip filter, professor Maiken Mikkelsen and her team created silver, 100-nm-wide cubes and placed them on a transparent film positioned a few nm above a thin layer of gold. When light hit the surface of a nanocube, it excited the electrons in the silver, trapping the light’s energy at a specific frequency. This frequency was determined by the size of the silver nanocube and its distance from the base layer of gold. By precisely tailoring the sizes and spacings in their setup, the researchers were able to control the amount of light that was absorbed and compel the system to respond to any electromagnetic frequency they chose.

An artistic rendering of a new type of multispectral imaging detector developed at Duke Univ. Ella Maru Studio.
An artistic rendering of a new type of multispectral imaging detector. Depending on their size and spacing, nanocubes sitting on top of a thin layer of gold trap specific frequencies of light, which heats up the materials beneath to create an electronic signal. Courtesy of Ella Maru Studio.

The researchers’ next goal is to harness this phenomena to build a commercial hyperspectral camera. To do so, they believe a grid of tiny, individual detectors, each tuned to a different frequency and made into a larger “superpixel,” will be required.

In a step toward that end, the team demonstrated four individual photodetectors tailored to wavelengths between 750 and 1900 nm. The plasmonic metasurfaces of the detectors absorbed energy from specific frequencies of incoming light and heated up. The heat induced a change in the crystal structure of a thin layer of pyroelectric material (aluminium nitride) sitting directly below the metasurfaces. That structural change created a voltage, which was then read by a bottom layer — a silicon semiconductor layer that transmitted the signal to a computer for analysis.

“It wasn’t obvious at all that we could do this,” Mikkelsen said. “Not only do our photodetectors work, but we’re seeing new, unexpected physical phenomena that will allow us to speed up how fast we can do this detection by many orders of magnitude.”

The new photodetectors are built from three layers. Jon Stewart, Duke University.
The new photodetectors are built from three layers. The size and spacing of silver nanocubes on a thin layer of gold dictates what frequency they absorb, causing them to heat up. A thin layer of a pyroelectric material called aluminum nitride then converts the heat to an electric signal, which is picked up and carried by a layer of silicon semiconductor on the bottom. Courtesy of Jon Stewart, Duke University.

The researchers used pyroelectric material to make their detectors. Previous photodetectors have been made with pyroelectrics, but they have not been able to focus on specific electromagnetic frequencies. Also, the thick layers of pyroelectric material that were required to create an adequate electric signal caused these photodetectors to operate at very slow speeds.

“Our plasmonic detectors can be turned to any frequency and trap so much energy that they generate quite a lot of heat,” researcher Jon Stewart said. “That efficiency means we only need a thin layer of material, which greatly speeds up the process.”

The previous record for detection times in any type of thermal camera with an on-chip filter, whether it used pyroelectric materials or not, was 337 microseconds. The Duke team’s plasmonics-based approach sparked a signal in just 700 picoseconds, which is roughly 500,000 times faster. Because the detection times were limited by the experimental instruments used to measure them, the new photodetectors could work even faster in the future, the researchers believe.

Mikkelsen sees several potential uses for commercial cameras based on the technology, because the process required to manufacture the photodetectors is relatively fast, inexpensive, and scalable. The combination of multiple photodetectors with different frequency responses on a single chip could enable lightweight, inexpensive multispectral cameras for applications such as cancer surgery, food safety inspection, and the team’s initial focus, precision agriculture. Mikkelsen envisions a cheap, hand-held detector that could image crop fields from the ground or from inexpensive drones. 

A new type of lightweight, inexpensive hyperspectral camera could enable precision agriculture. This graphic shows how different pixels can be tuned to specific frequencies of light that indicate the various needs of a crop field. Courtesy of Maiken Mikkelsen and Jon Stewart, Duke University.

A new type of lightweight, inexpensive hyperspectral camera could enable precision agriculture. This graphic shows how different pixels can be tuned to specific frequencies of light that indicate the various needs of a crop field. Courtesy of Maiken Mikkelsen and Jon Stewart, Duke University.

“Obtaining a ‘spectral fingerprint’ can precisely identify a material and its composition,” Mikkelsen said. “Not only can it indicate the type of plant, but it can also determine its condition, whether it needs water, is stressed, or has low nitrogen content, indicating a need for fertilizer.” Hyperspectral imaging could enable precision agriculture by allowing fertilizer, pesticides, herbicides, and water to be applied only where needed, saving water and money and reducing pollution.

The research was published in Nature Materials ( 

Photonics Handbook
A sub-field of photonics that pertains to an electronic device that responds to optical power, emits or modifies optical radiation, or utilizes optical radiation for its internal operation. Any device that functions as an electrical-to-optical or optical-to-electrical transducer. Electro-optic often is used erroneously as a synonym.
The study of how light interacts with nanoscale objects and the technology of applying photons to the manipulation or sensing of nanoscale structures.
hyperspectral imaging
Methods for identifying and mapping materials through spectroscopic remote sensing. Also called imaging spectroscopy; ultraspectral imaging.
multispectral imaging
Multispectral Imaging: Creation of an image where each pixel contains more than three spectral data points, typically four to 20. This is contrasted with a standard color camera that only captures three spectral data points (called RGB), or hyperspectral cameras, which capture hundreds of spectral data points. Traditional multispectral cameras captured four data points: RGB and an NIR band. Nowadays multispectral cameras are available as commercial off-the-shelf products, with 12 custom bands...
Research & TechnologyAmericaseducationDuke Universityoptoelectronicsmetamaterialsnanomaterialsplasmonicsnanophotonicsimaginglight sourcesmaterialsopticsSensors & Detectorscamerashyperspectral imagingmultispectral imaginghandheld devicesnanospectroscopymultispectral camerathermal cameraelectromagnetic materialshand-held devicesBioScan

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2021 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.