Molecular Vibrations Imaged for First Time

Facebook X LinkedIn Email
Scientists at the University of California, Irvine (UCI), focused light down to the size of an atom to produce the first images of a molecule’s normal modes of vibration. The images could provide a better understanding of the concept of vibrational normal modes, which until now has been a theoretical concept. “We’ve long been aware of these vibrations,” said professor V. Ara Apkarian. “For ages, we have been measuring their frequencies through spectroscopy — but only now have we been able to see what is moving and how.” Professor V. Ara...Read full article

Related content from Photonics Media



    Photonics Handbook Articles

    White Papers


    Photonics Dictionary Terms


    Photonics Buyers' Guide Categories

    Published: April 2019
    raman spectroscopy
    Raman spectroscopy is a technique used in analytical chemistry and physics to study vibrational, rotational, and other low-frequency modes in a system. Named after the Indian physicist Sir C.V. Raman who discovered the phenomenon in 1928, Raman spectroscopy provides information about molecular vibrations by measuring the inelastic scattering of monochromatic light. Here is a breakdown of the process: Incident light: A monochromatic (single wavelength) light, usually from a laser, is...
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    Nanophotonics is a branch of science and technology that explores the behavior of light on the nanometer scale, typically at dimensions smaller than the wavelength of light. It involves the study and manipulation of light using nanoscale structures and materials, often at dimensions comparable to or smaller than the wavelength of the light being manipulated. Aspects and applications of nanophotonics include: Nanoscale optical components: Nanophotonics involves the design and fabrication of...
    Plasmonics is a field of science and technology that focuses on the interaction between electromagnetic radiation and free electrons in a metal or semiconductor at the nanoscale. Specifically, plasmonics deals with the collective oscillations of these free electrons, known as surface plasmons, which can confine and manipulate light on the nanometer scale. Surface plasmons are formed when incident photons couple with the conduction electrons at the interface between a metal or semiconductor...
    Research & TechnologyeducationUniversity of CaliforniaIrvineAmericasImagingLight SourcesMicroscopyOpticsoptical microscropyspectroscopyRaman spectroscopynanonanophotonicsplasmonicsmolecular vibrationLaserscryogenicscanning tunneling microscopesTech Pulse

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.